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Dissertation directed by Prof. Dr. Amer Diwan

Systems research is an experimental science. Most research in computer systems

follows the trend of innovate (e.g. build a novel garbage collector) and then evaluate

(e.g. does it significantly speed up our programs). Researchers use experiments to drive

their work; they use experiments to identify bottlenecks and then again to determine

if their innovations for addressing those bottlenecks are effective. If their experiments

are not carried out properly, researchers may draw incorrect conclusions; they may end

up wasting time on something that is not really a problem and may conclude their

innovations are beneficial even when they are not.

A complicating factor in computer systems experiments is the fact that computer

systems are nonlinear dynamical systems, capable of complex and even chaotic behavior.

A hallmark of chaos is a sensitive dependence on initial conditions—small changes to

the system lead to a large effect on its overall behavior. This sensitivity complicates

both observations of our systems and evaluations of our innovations. It complicates

our observations because our measurement tools perturb the system they are observing.

It complicates our evaluations because small changes to the environment in which we

carry out our experiments can cause large and dramatic changes in system behavior.

In this dissertation, we argue the systems community needs to support experi-

ments with tools that allow a researcher to accurately observe her system and method-

ologies that allow researchers to accurately evaluate the impact of their innovations.

To support our argument, we introduce two tools that allow researchers to accurately

observe their application’s behavior and one methodology that allows researchers to

accurately evaluate the impact of their innovations.
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Chapter 1

Introduction

Systems research is an experimental science[22; 57; 69]. Most research in com-

puter systems follows the trend of innovate (e.g. build a new whiz bang garbage collec-

tor) and then evaluate (e.g. does it significantly speed up our programs). Researchers

use experiments to drive their work; they use experiments to identify performance bot-

tlenecks and then again to determine if their innovations for addressing those bottlenecks

are effective. If their experiments are not carried out properly, researchers may draw

incorrect conclusions; they may end up wasting time on something that is not really a

problem and may conclude their innovations are beneficial even when they are not.

Unfortunately, carrying out a proper experiment in computer systems is difficult.

As we demonstrate in forthcoming chapters, common experiments in computer systems

research are easily biased, which lead a researcher to incorrect conclusions.

To support this thesis, we demonstrate that current state of the art measurement

tools and evaluation methodologies are biased and thus often produce inaccurate mea-

surements and incorrect evaluations. Bias arises when one experimental setup—or the

environment in which we carry out our experiments—favors one particular experimental

outcome. For example, we show in a later chapter that the order in which one links

object files together overestimate the efficacy of the gcc optimization level O3.

Bias is a source of inaccuracy in systems experiments and in this dissertation we

argue that the systems research community needs to support experiments with tools
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that allow a researcher to accurately observe her system and methodologies that allow

researchers to accurately evaluate the impact of their innovations. Without mitigating

the effects of bias on our experiments with these tools and methods, progress in our

domain suffers.

1.1 The role of experiments in computer systems research

A major goal of systems research is to build better systems—i.e. more energy

efficient hardware, smarter operating systems, faster virtual machines, or easier to use

software abstractions. To do so requires we experiment. For example, in order to un-

derstand how to make our state of the art virtual machine faster, we need to observe

its behavior and understand the source of any performance anomalies. In short, ex-

periments drive our work: we experiment in order to understand the behavior of our

systems and use that understanding to build better systems. Generally speaking, when

we carry out an experiment in systems we follow these three steps:

• OBSERVATION: We measure our system in order to find its bottlenecks.

• INNOVATION: Once we understand where and how bottlenecks arise in our

system, we hypothesize an innovation that we hope will fix those bottlenecks.

• EVALUATION: We measure our system before and after applying our innovation

to test whether our innovation successfully fixes our application’s bottlenecks.

Whenever a researcher observes her software in order to find the location of its

bottlenecks, she trusts her OBSERVATIONS are accurate. If they are not, she cannot

truly understand the behavior of her system and any innovation she builds based on

that faulty understanding is suspect. Likewise, whenever a researcher EVALUATES the

impact of an innovation on her system’s bottlenecks, she trusts her evaluation method-

ology will accurately estimate the impact of her innovation on her system’s bottlenecks.

If it does not, she may conclude her innovation is useful even when it is not.
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static int i , j , k , inc ;
int main ( ) {

int g ;
i = j = k = 0 ;
inc = 1 ;
for ( g = 0 ; g < 65536 ; g++) {

i += inc ;
j += inc ;
k += inc ;

}
return 0 ;

}

(a) C code for micro-kernel
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(b) Effect of parameters on performance

Figure 1.1: A micro-kernel that shows extreme sensitivity to its experimental setup

Unfortunately, as we show in this dissertation, popular tools for observing our

programs behavior are often inaccurate and state of the art methodologies for evaluating

our innovations are likely to incorrectly estimate the impact of our innovations. As a

consequence, progress in computer systems research suffers.

1.2 What makes experiments hard

Complicating both the OBSERVATION and EVALUATION processes of our exper-

iments is that the behavior of computer systems is sensitive. Computer systems are

nonlinear dynamical systems, capable of complex and even chaotic behavior[9; 52]. A

hallmark of chaos is a sensitive dependence on initial conditions, small changes to the

system lead to a large effect on its overall behavior. Ultimately, this sensitivity gives

rise to the bias we study in future chapters.

An example here helps make our point: program performance is sensitive to the

experimental setup in which we measure performance. We measured the execution time

of the simple code in Figure 1.1 (a) while varying two seemingly innocuous aspects of

the experimental setup: the start of the stack section and the start of the data section in

an ELF binary, respectively. Figure 1.1 (b) illustrates the effect of these two parameters

on the overall runtime of this simple program. The color of a point (x, y) gives the total



www.manaraa.com

4

runtime (in cycles on a Core 2 workstation) when the address of the data segment is at

offset x and the start address of the stack is at offset y. We run each configuration 8

times in order to remove the effects of outliers. The color of the point denotes the mean

runtime in cycles.

From this simple example we can see that the program’s runtime can fluctuate by

about 1.5x depending on the location of these two parameters. The fact that program

performance is this sensitive to aspects of our experimental setup complicates two parts

of the experimental process:

• OBSERVATION: Most of our measurement infrastructures operate from within

the systems they are trying to measure. As a consequence, they impact the

behavior of the programs they are trying to observe. This perturbation can

be large, even at times when we think we have a low overhead measurement

infrastructure. As a result, it is difficult to know when we should trust our

observations.

• EVALUATION: Subtle and small changes in seemingly innocuous aspects of an

experimental setup—or the environment in which we carry out our experiments—

can cause large and dramatic changes in overall system behavior. Because differ-

ent users have different experimental setups, different users can come to opposite

conclusions about the efficacy of an innovation—even when these evaluations

occur on the same machine. This makes it difficult to know when we should

trust our evaluations.

In concert, these complications adversely affect the experimental process in computer

systems research. The experimental setup in which I run my experiments may be slightly

different than your experimental setup and as a consequence, my experiments may not

generalize to yours. In other words, my experiments are biased.
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1.3 Supporting experiments in computer systems

In this dissertation, we acknowledge that the sensitivity of computer systems can

bias our observations and our evaluations. With this knowledge, we introduce tools and

methodologies that allow researchers to know whether or not the sensitive nature of

computer systems behavior is biasing their experiments and if so, how to mitigate its

effects.

This dissertation has two parts. In the first two chapters, we demonstrate that

common systems experiments are often biased. In the last chapter we show how to miti-

gate the impact of bias on traditionally expensive metrics through passive observations.

We should note that we do not claim to be exhaustive in this dissertation—that

is we do not provide an EVALUATION methodology that allows a researcher to trust all

of her evaluations. Nor do we provide an OBSERVATION tool that is always correct, no

matter the measurement. Instead, we pick common tasks that require experimentation

in computer systems research and study those.

1.3.1 Trusting our observations

In this chapter we discuss how we can observe our system and trust the result

of those observations. In particular, we consider a observation task that is common in

computer systems research—profiling. Software researchers profile their programs to

find methods that take up a significant amount of overall runtime; a profile guides the

researcher to hotspots in her code. Once a researcher knows which methods are hot,

she can focus on them to improve her program’s performance. If a profile is inaccurate,

however, the researcher will waste her time; her efforts will be focused on methods

that are not really hot. In this chapter, we demonstrate that existing, state of the art

Java profilers (two commercial and two open source products) often produce inaccurate

profiles. This work investigates why these profilers are often inaccurate. We use that
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knowledge to develop a profiler that does not suffer from the same issues as current

profilers thus produces more accurate profiles.

1.3.2 Trusting our evaluations

In this chapter we demonstrate that experimental setups—or the environments

in which researchers carry out their experiments—are often biased [53]. For example,

consider a researcher who wants to determine if optimization O is beneficial for system

S. If she measures S and S + O in an experimental setup that favors S + O, she may

overstate the effect of O or even conclude that O is beneficial even when it is not. We

show bias is commonplace and significant in current computer systems research: it can

easily lead to a performance analysis that yields incorrect conclusions. We conclude by

evaluating the efficacy of a solution to bias: find its source and use proper randomization

techniques to factor out its impact on our conclusions. In this chapter we show not only

that bias is pervasive in computer systems evaluation, but also what to do about it.

1.3.3 Mitigating bias through passive observation

If small changes to our programs can have a large impact on their performance,

how do we capture measurements that traditionally require a measurement tool to

execute a large number of instructions in order to carry out its measurement? In

computer systems research, most measurement techniques are active; they add expensive

instrumentation to a program to capture a metric of interest. In this chapter, we

advocate a passive approach to measurement. Our idea is simple: we statistically sample

the state of a running program and then from those samples, infer interesting aspects

about the program’s behavior—no instrumentation required. Specifically, in this

chapter we show readily available information during program execution—the height of

the call stack and the identity of the current executing function—are good indicators

of calling context, or the sequence of function calls that lead up to current executing
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function[51]. Current active approaches to capturing calling context are expensive,

slowing a program by 10% on average. Our passive approach captures these same data

without slowing the application. By using a passive approach to measurement, we

enable measurements that are not possible with current approaches (e.g. which call

paths have the largest number of L1 data cache misses) and at the same time, remove

instrumentation as a source of bias.

1.4 Contributions

In concert, these observation tools and evaluation methodology support experi-

ments in computer systems research. While the tools and methodology we introduce in

this dissertation do not exhaustively cover all possible types of experiments one would

like to do in systems research, we feel they do cover common cases. Moreover, most

chapters, in addition to introducing our tools and methodology, also demonstrates the

adverse effect of not supporting experimental methods in computer systems research.

The contributions of this dissertation are as follows:

• We demonstrate that compiler evaluations may be biased, leading a researcher to

an incorrect conclusion. We show, using a literature survey of 133 recent papers

from ASPLOS, PACT, PLDI, and CGO, that prior work does not adequately

consider the effects of the bias on their evaluations. We discuss and demonstrate

one technique for avoiding bias and one technique for detecting it.

• We demonstrate that current state of the art Java profilers (two open-source and

two commercial products) often produce biased and thus inaccurate profiles. In

response, we demonstrate how a Java profiler can produce less biased and thus

more accurate profiles.

• We introduce a passive approach to collecting call path profiles that has almost

no overhead. Current approaches to collecting call path profiles add expensive
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instrumentation that slows and biases the profiler’s results. Our almost zero

overhead approach removes instrumentation as a source of bias in our experi-

ments.

This dissertation is organized as follows: Chapter 2 provides background on the

experimental methods we employ in this dissertation. Chapter 3 demonstrates that Java

profilers are often inaccurate evaluates introduces a proof of concept Java profiler that

is more likely to be accurate. Chapter 4 illustrates the impact of bias on our evaluations

and provides a solution for detecting and dealing with bias. Chapter 5 investigates our

passive approach to producing call path profiles that allows us to observe aspects of our

program’s performance that until now have had a prohibitively high overhead. Finally,

Chapter 6 puts our work in context of related work and Chapter 7 concludes.
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Experimental methods

In this dissertation we do our best to ensure our own experiments are as free from

experimental error as possible. Broadly speaking, experimental error creeps into our

OBSERVATIONS and EVALUATIONS through random effects and systematic effects.

Random effects are fluctuations in our OBSERVATIONS from run to run. They

are random because we are just as likely to overestimate the impact of our measurement

as we are to underestimate it. Factors in the the environment, such as the operating

system scheduling policies or unrelated network and disk activity may affect our mea-

surements as they interact with our system through shared hardware structures (such

as caches, TLBs and busses). We in the systems community already have a strategy

for removing random effects from our measures: we run experiments on unloaded ma-

chines, only access local disks, and use multiple runs along with confidence intervals or

error bars to quantify any variation from run to run[11; 34]. In this way, we ensure our

OBSERVATIONS, and thus our EVALUATIONS are free from random effects.

In contrast to random effects, systematic effects persist in our experiments, despite

multiple runs. Unfortunately, statistics do not give us the tools we need to remove sys-

tematic effects from our experiments. Systematic effects arise when our OBSERVATIONS

are consistently affected by some aspect of our measurement process. For example, con-

sider a faulty hardware performance monitor that systematically reports 1000 more

L1 data cache misses than actually happen during a program’s execution. We can-
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not remove this effect from our measurements through statistics. Indeed, many of the

phenomena we discuss in later chapters are a result of systematic effects. The tools

and methodologies we introduce in this dissertation all try to mitigate the impact of

systematic effects on the experimental process.

In this chapter, we generalize our experimental methods. In the sections that

follow we describe our approach to measurement, the benchmark programs we use in

our experiments and the platforms we carry out our experiments on.

2.1 Approach to measurement

To mitigate the impact of random effects on our experiments and increase the

reproducibility of our results, we follow best practices in regards to our measurements.

Specifically:

• We conduct all our experiments on unloaded machines, use only local disks, and

repeat each experiment multiple times to ensure that our data are representative

and repeatable.

• Where applicable, we conduct our experiments on multiple hardware platforms

or Java Virtual Machines (JVMs). This way we ensure our results are not an

artifact of one particular machine.

• To minimize measurement overhead, we collect almost all data using hardware

performance monitors accessed with PAPI [14].

• Unless otherwise stated, we conduct our experiments in a minimal UNIX envi-

ronment (i.e., we unset all environment variables that were inessential). Some

Linux kernels randomize the starting address of the stack (for security pur-

poses). This feature can make experiments hard to repeat and thus we disabled

it for our experiments.
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Figure 2.1: An example violin plot. Each violin is a normal distribution with different
mean and variance.

• We always use multiple runs and quantify our results with average—or mean—

behavior. Unless otherwise noted, we also provide, along with mean behavior,

a 95% confidence interval of the mean.

As a consequence of our careful approach to measurement, we generate a large number

of observations per experiment. In short, for each experiment we generate a distribution

of observations. To aid in our display of these distributions, we employ violin plots[38]

(example in Figure 2.1). The violin plot is similar to a box plot, except that they also

show the probability density of the data at different values. The white dot in each violin

gives the median and the thick line through the white dot gives the inter-quartile range

(much like a box-plot). The width, however, of a violin at y-value y is proportional to

the number of times we observed y. In this way, we can succinctly display distributions

for our experiments.

2.2 Benchmarks

We use Dacapo[11] and SPEC CPU2006[65] C/C++ benchmark for our exper-

iments. Table 2.1 gives the suite, benchmark name, and benchmark description for

the benchmarks we use in this dissertation. Each Chapter uses a subset of these bench-

marks. Here we enumerate how we use each benchmark suite.
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Suite Benchmark Description

gcc C compiler
libquantum Quantum computer simulator
perlbench Scripting language interpreter
bzip Compression algorithm

CINT h264ref Video encoding
mcf Single-depot vehicle scheduler
gobmk Go program
hmmer Computational biology DNA sequence search
sjeng Chess program

sphinx3 Speech recognition
CFP milc 4D Lattice simulations

lbm 3D Fluid dynamics

namd Simulation of biomolecular systems
dealII Finite Element Library

C++ soplex Solves linear program using Simplex
povray Ray tracing program
astar 2D path finding for game AI

antlr parser generator
bloat Java byte-code optimizer
chart plotter and PDF render

DACAPO fop print formatter
jython python interpreter
luindex text indexing tool
pmd Java source code analyzer

Table 2.1: Benchmarks used in our experiments.
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2.2.1 SPEC CPU 2006 benchmarks

In Chapter 4 we use all the C benchmarks from CINT (integer) and CFP (float-

ing point) of SPEC CPU2006. We did not consider the non-C programs because the

optimization levels would not be comparable between the compilers for different pro-

gramming languages. To generate the data for the figures in this chapter, we ran each

benchmark 5,940 times. To ensure that we could collect this data in a timely manner,

we used the train input for all experiments. Even with the train input, it took us 12

days to generate the needed data for our longest running benchmark, sjeng.

In Chapter 5 we use the SPEC CPU2006 C and C++ benchmark suite. We

were unable to get 4 of the 19 benchmarks working with our passive call path profiling

technique: xalancbmk, gcc, and gombk are too large for our instrumentation. Bench-

mark omnetpp uses setjmp and longjmp for co-routines that our instrumentation is

not able to handle. We also had to manually add instrumentation to two methods in

povray due to a bug in icc that causes exits from those methods to not be properly

instrumented. We use both the train and ref input sets in this chapter.

2.2.2 Dacapo benchmarks

In Chapter 3 we use the single threaded Dacapo Java benchmarks with the default

inputs. In this chapter we evaluate whether or not four popular state of the art profilers

are likely to agree as to the location and magnitude of an application’s hotspots. We ig-

nore those Dacapo benchmarks that are multi-threaded (eclipse, lusearch, xalan

and hsqldb) as this made it difficult to reasonably compare profiles across the different

profilers; each profiler handles threads differently which complicates the comparison.
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Parameter Core 2 Pentium 4 m5 (O3CPU)
Operating System Linux 2.6.25 Linux 2.4.21 NA
Tool Chain gcc 4.1.3 gcc 4.2.1 gcc 4.1.0
Measurement papi-3.5.1/pfmon-3.4 papi-3.0.8/perfmon-5.2.16 NA
– toolchain glibc 2.4-r3 glibc v6
Micro-architecture Core NetBurst Alpha
Clock Frequency 2.4 GHz 2.4 GHz 1GHz
memory 8G 2G 512M
L1 32K Ins., 32K Data 12K Ins. 8K Data 32K Ins. 64K Data
L2 128K Unified 512K Unified 2M Unified
L3 4096K NA NA
data cache size 4096K 512K 512K
instruction cache size 32K L1, 128K L2 12K L1, 512K L2 128K
TLB entries 512 64 48 Ins. 64 Data

Table 2.2: Description of the machines used this dissertation.

2.3 Platform

We use three platforms in this dissertation: two popular Intel processors and

one simulator. We detail our platform in Table 2.2. Each chapter uses one of these

platforms:

• In Chapter 3, we use the Intel Core 2 workstation for our experiments. To

increase the generality of our results, we use two production JVMs: Sun Hotspot

version 1.6.0 12 and IBM J9 version 60. Unless we explicitly say so, we use the

Sun JVM for all of our experiments. In both JVM’s we always use the default

configuration that ships with the JVM (e.g. memory size).

• In Chapter 4, we conduct our experiments on two machines: a Pentium 4 and

a Core 2 workstation. On both machines we ran Linux and used PAPI [14] to

extract hardware performance monitor information. We added all our instru-

mentation that accesses PAPI in a wrapper around the main function. The

wrapper sets up the data collection before main executes and reads out the col-

lected data after main exits. Unless we state otherwise, all data in this chapter

is for the Core 2 workstation. We report selected data for the Pentium 4 work-

station and the m5 simulator using the O3CPU model [10] to demonstrate the

generality of our results.
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• In Chapter 5, we use the Intel Core 2 workstation for our experiments. Some

of our experiments require us to capture the the program counter and the stack

pointer of a running program. To accomplish this we made slight modifications

to the pfmon UNIX tool so as to capture both the PC and SP registers when

we sample with the precise event based sampling (PEBS) mechanism[64]. PEBS

allows precise attribution of a certain limited set of hardware events to instruc-

tions (e.g. which instruction caused the 1000th L1 data cache miss). In our

experiments we sample every one million cycles. In order to interrupt on cycles,

we use the PEBS enabled event instructions retired in conjuncture with

the mask and inv parameters of the hardware performance monitor. Specif-

ically, we set mask to 8 and inv to 1. This has the effect of counting cycles

in which 8 or less instructions retire per cycle. An Intel Core 2 microprocessor

must retire anywhere from 0-8 instructions per cycle, so the PEBS counter with

these parameters is effectively counting cycles. This is necessary because we

need to sample every N cycles and not every N instructions.
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Chapter 3

Trusting our OBSERVATIONS

Systems researchers use experiments to drive their work; they use experiments

to identify bottlenecks and then again to determine if their ideas for addressing those

bottlenecks are effective. If the OBSERVATION aspect of an experiment is biased, a

researcher may draw an incorrect conclusion: she may end up wasting her time fixing a

bottleneck that is not really a problem.

In this chapter we show that four commonly-used Java profilers (xprof [68], hprof [67],

jprofile[27], and yourkit[73]) often produce biased OBSERVATIONS. For example, con-

sider a researcher who wants to determine if method M is hot and thus worthy of

optimization. If she uses a profiler that systematically overestimates the time spent in

M, she may conclude that M is hot even when it is not. This phenomenon is called

bias in other areas of experimental science and in this chapter we show that profiler bias

is significant and commonplace: it can easily produce an OBSERVATION that misleads

a researcher into optimizing a “hot” method that is not really hot.

This chapter explores the extent of profiler bias by comparing the profiles of four

commonly-used Java profilers on the DaCapo benchmark suite. Specifically, we show

that these profilers often disagree on both the identity of the hot methods in a program

and the time spent in those methods; if two profilers disagree, they cannot both be

correct and one or both is producing a biased profile.

A profiler may produce biased profiles for two reasons. First, a profiler’s imple-
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mentation may favor some methods over others. For example, a profiler that ignores

native methods (i.e., biased away from native methods) may indicate that the hot meth-

ods are in user code when in reality they are all in native code. Second, a profiler may

perturb the program as it runs and thus change its profile (i.e. the observer effect).

This chapter shows that both of these effects contribute to biased profiles.

Generally speaking, we cannot ever know if a profiler produces biased profiles:

to know if it is we need a “perfect” profile, or one that lacks any form of bias, that

we can use as a baseline. Unfortunately, all profilers operate from within the system

they measure and thus suffer from some form of bias. To get around this problem, we

introduce the notion of an “actionable” profile. We say a profile is actionable if our

acting on a profile yields the outcome we expect. For example, if a profile identifies

method M as contributing 10 seconds to a 20 second program, we expect that after

speeding up M by 50%, the program’s runtime should drop to 15 seconds. If our

expectations are not met, the profiler must have overestimated (or underestimated) the

time in M and was thus not actionable. A nice property of our actionable property is

that non-actionable profiles are biased profiles. In other words, we can use the notion

of actionable to understand profiler bias.

In this chapter, we evaluate whether four popular profilers produce actionable

profiles. In particular we demonstrate how to use causality analysis[58] to determine if

a profile is actionable. Causality analysis works by intervention: we change our system

(the intervention) and then check if the intervention yields the predicted performance.

If the prediction holds, then causality analysis gives us confidence that the profile is

actionable; if the prediction does not hold, causality analysis indicates that the profiler is

not actionable. Using causality analysis, we demonstrate that the previously mentioned

state-of-the-art Java profilers do not produce actionable profiles. A non-actionable

profile is a biased profile. To ensure our results are not an artifact of a particular Java

virtual machine (JVM) we are using, we show that profilers often produce non-actionable
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Figure 3.1: Disagreement in the hottest method for benchmark pmd across four popular
Java profilers.

profiles on two different production JVMs (Sun’s Hotspot and IBM’s J9).

To conclude this chapter, we provide a solution to profiler bias. In particular,

we identify the source profiler bias and then introduce a proof-of-concept Java profiler

that does not suffer from this source of bias. Finally, we demonstrate that our proof-of-

concept profiler produces actionable profiles.

3.1 An example of profiler bias

Figure 3.1 illustrates the amount of time that four popular Java profilers (hprof ,

jprofile, xprof , and yourkit) attribute to three methods from the pmdDaCapo benchmark[11].

There are three bars for each profiler, and each bar gives data for one of the three meth-

ods: jj scan token, getPositionFromParent, and evaluate. These are the methods that

one of the four profilers identified as the hottest method. For a given profiler, P, and

method, M, the height of the bar is the percentage of overall execution time spent in M

according to P. The error bars (which are tight enough to be nearly invisible) denote

95% confidence interval of the mean.

Figure 3.1 illustrates that the four profilers disagree dramatically about which

method is the hottest method. For example, two of the profilers, hprof and yourkit,

identify the jj scan token method as the hottest method; however, the other two profil-

ers indicate that this method is irrelevant to performance, because they attribute 0%
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execution time to it.

Figure 3.1 also illustrates that even when two profilers agree on the hottest

method, they disagree in the percentage of time spent in the method. For example,

hprof attributes 6.2% of overall execution time to the jj scan token method. While

yourkit, which also identifies this method as hot, attributes 8.5% of overall execution

time to this method.

When two profilers disagree, they cannot both be correct—one or more is biased.

If a systems researcher uses one of these profilers to understand their system, they may

get a biased profile. As a consequence the systems researcher may waste their time

optimizing a cold method that will not improve performance. This chapter demon-

strates this example is not a corner case but occurs when we profile the majority of our

benchmarks.

3.2 Profiler bias is significant and commonplace

In the last section, we showed, at least for one program, four profilers identify

three different “hottest” methods. Worse, the hottest method due to one profiler is

often cold according to another profiler. Thus, at least some of the profilers produce

biased profiles.

In this section we demonstrate that profiler bias is both significant and com-

monplace. By significant, we mean a profiler frequently overestimates the hotness of a

method by 10s of percent. By commonplace, we mean profiler bias shows up with four

popular profilers on two production Java virtual machines (Sun Hotspot and IBM J9).

3.2.1 Metrics for quantifying profiler agreement

Before we delve into the extent of profiler bias, we need to define two metrics that

allow us to quantify profiler disagreement.

• Unionn is the cardinality of the set obtained by unioning the hottest n methods



www.manaraa.com

20

from each profiler. More formally, if the set of n hottest methods according to

four profilers are H1, H2, H3, and H4 respectively, then Unionn is |H1 ∪ H2 ∪

H3 ∪H4|. In the best case, Unionn is n indicating that the profilers agreed with

each other in the identity (but not necessarily order) of the hottest n methods.

In the worst case, Unionn is n ∗m, where m is the number of profilers and n ∗m

indicates systematic disagreement between each of the m profilers(i.e. every

profiler disagrees with every other profiler).

• Hotnessp
m is the percentage of overall execution time spent executing a method,

m according to profiler p. Hotnessp
m tells a researcher how much of a benefit

they can expect when they optimize m. For example, if the Hotnessp
m is 5%,

the maximum speedup we expect from optimizing m is about 5%.

We picked the above two metrics because they capture two of the most common ways

in which researchers interpret profile information. Specifically, researchers often focus

on the few hottest methods especially if these methods each account for more than a

certain percentage of program execution time.

To ensure statistically significant results, we always run our experiments multiple

times. Consequently, when we report the above two metrics, we report the average

behavior across multiple runs (usually 30). For Unionn we order the methods for each

profiler based on the average from these multiple runs and then compute the union.

3.2.2 How frequently do profilers disagree?

The agreement of two profiles is a good sign, because the likelihood that two

profiles will be biased in the same way is small; therefore, profiler agreement builds

confidence that both profiles lack bias.

On the other hand, if two profiles disagree then at least one profile must be biased.

If disagreement happens only for some corner cases, we may be justified in ignoring it.
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Figure 3.2: Union1 across the four profilers.

On the other hand, if profilers disagree frequently, then we cannot ignore it, because that

disagreement indicates biased profiles. In this section, we use Unionn and Hotnessp
m

to illustrate the extent of profiler bias.

3.2.2.1 Profilers disagree on the hottest method

To understand the extent of profiler bias on the hottest method in a profile, we

use the Union1 metric, across the four profilers, to show that profilers often disagree

in the identity of the hottest method (Figure 3.2). Each bar in this figure gives the

Union1 metric for one benchmark. Recall that Union1 will be 1 if all profilers agree on

the hottest method and 4 if the four profilers totally disagree on the hottest method.

Figure 3.2 demonstrates profiler disagreement for four of the seven benchmarks

(i.e., the bars are higher than 1). In other words, if we use one of these profilers to

identify the hottest method in a program, we may end up with a method that is not

really the hottest method.

We examined the raw data for this figure and saw no obvious trends: e.g., there

is no one profiler that always disagrees or agrees with another profiler. For example,

hprof is just as likely to disagree with yourkit as xprof on any given benchmark. As

a consequence, we cannot just throw out one profiler and expect that the remaining

profilers to all agree with each other.
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These results are surprising: the most common usage scenario for profilers is to

use them to identify the hottest method; our results show that profilers often fail even

in this basic task.

3.2.2.2 Profilers disagree on the hottest n methods

One explanation for the profiler disagreements in Figure 3.2 discussed in the prior

section is that there are other methods that are as hot or nearly as hot as the hottest

method. In this case, two profilers may disagree with each other but both could be

(almost) correct. For example, if the program spends 20% of its time in the hottest

method and 19.9% in the second-hottest method, then some profilers may identify the

first method as the hottest while some may identify the second method; both are close

enough to being “hottest” that the disagreement does not really matter.

Unfortunately, this is not the case. Consider the profiler disagreement, for exam-

ple, pmd shown in Figure 3.1: hprof and yourkit, identify the jj scan token method as the

hottest method; however, the other two profilers indicate that this method is irrelevant

to performance, because they attribute 0% execution time to it. In this section we show

that this trend holds for the full suite of benchmarks.

Figure 3.3 presents Unionn for n ranging from 1 to 10. A point (x, y) says that

Unionx is y. Each point is the mean across the 7 benchmarks and error bars denote 95%

confidence interval of the mean. The line y = 1 ∗ n gives the best possible scenario for

profiler agreement: with full agreement, the number of unique methods across the top-n

hottest methods of the four profilers (i.e., Unionn) will be n. The line 4 ∗ n gives the

worst case scenario for profiler agreement: there is no agreement among the 4 profilers

as to what are the top-n hottest methods.

From Figure 3.3 we see that as we consider more methods (i.e., increase the n

value), Unionn increases. In other words, even if we look beyond the hottest method

and disregard the ordering between the hottest few methods, we still get profiler dis-
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Figure 3.3: Unionn for our four profilers and n ranging from 1 to 10.

agreement.

3.2.3 By how much do profilers disagree?

The Unionn metric for quantifying disagreement ignores the percentage of time

the program spends in the hot methods. This percentage determines whether or not the

researcher will even bother to optimize the method; e.g., if the hottest method accounts

for only one percent of execution time, it may not be worth optimizing even though it

is the hottest method.

In this section we investigate the extent to which profilers disagree as to the hot-

ness of a particular method (Figure 3.4). The x-axis in this figure gives HotnessB
m,

or the percentage of overall execution profiler B attributes to method m while the y-axis

gives HotnessA
m, or the overall execution profiler A attributes to method m. For each

benchmark, we find the hottest method (m) according to profiler B and then see how

much profiler A attributes to method m. We consider all possible pairs of profilers as

profilers disagree to identity of the hottest method.

From Figure 3.4, we see that the magnitude of profiler disagreement is large. If

profiler A agrees perfectly with profiler B as to the hotness of method m, we should see

a straight line at y = x. Any deviation from this line shows the magnitude of profiler

bias. Unfortunately, we see large deviation from the y = x line.
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Figure 3.4: Disagreement in the magnitude of the hottest method for all possible pairs
of profilers.

For example, in Figure 3.2 we showed that all four profilers agree as to which

method is hottest for benchmark fop; however, Pyourkit and Pjprofile disagree as

to the magnitude of this method by 26%, despite Pyourkit attributing 70% of overall

execution to this method. In many cases, we see that one profiler finds that a method

consumes tens of a percent of execution time while another profiler finds that the method

consumes little or no execution time. Finally, by inspecting this graph manually, we see

no consistent agreement between profilers: e.g. hprof sometimes agree and disagrees

with jprofile.

To summarize, different profilers attribute vastly different amounts of time to the

same method. Because researchers use the time spent in a method to decide whether or

not they should optimize the method, this disagreement can easily mislead a researcher.

3.2.4 Is profiler disagreement innocuous?

If two profilers identify different methods as the “hottest” but the two methods

are in a caller-callee relationship then the disagreement may not be problematic: it is

often difficult to understand a method’s performance without also considering its callers

and callees and thus a researcher will probably end up looking at both methods with

both profilers.
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Figure 3.5: When a pair of profilers disagree, how is that disagreement distributed?

Figure 3.5 categorizes profiler disagreement to determine if the caller-callee re-

lationship accounts for most of the disagreement between profilers. A given pair of

profilers may (a) agree on the hottest method (“agree”); (b) disagree on the hottest

method but the hottest method due to one profiler is a transitive caller or callee of

the hottest method due to the other profiler (“caller/callee”); or (c) disagree on the

hottest method and the hottest method returned by one profiler does not call (directly

or transitively) the hottest method returned by the other profiler (“disagree”). Each

bar categorizes the agreement for all profiler pairs for one benchmark; because there are

six (
(4
2

)

) possible pairings of four profilers, each bar goes to 6.

From Figure 3.2, we know that all four profilers agree on the hottest method for

benchmarks bloat, chart, and fop, and thus all the profiler pairs for these bench-

marks fall in the “agree” category. However, for the four benchmarks where the profilers

disagree, only one benchmark, luindex has a caller/callee relationship between the

hottest methods identified by the different profilers. Three out of the four times when

a pair of profiler’s disagree their hottest methods are not in a (transitive) caller/callee

relationship.

In summary, profiler disagreement is not innocuous: when two profilers disagree

one or both of them may be totally incorrect.



www.manaraa.com

26

antlr bloat chart fop jython luindex pmd

0

1

2

3

4

U
N

IO
N

 1

benchmark

Sun Hotspot

IBM J9

Figure 3.6: The number of unique methods across suite of profilers.

3.2.5 Is the JVM the cause of profiler disagreement?

In Figure 3.2, we quantified profiler agreement on Sun’s Hotspot production JVM.

We also repeated the same set of experiments using IBM’s J9 production JVM. Because

J9 does not ship with xprof , we used three profilers for J9 instead of four.

For J9 we also found the same kinds of profiler disagreement as with Hotspot

(summarized in Figure 3.6). For example, across the seven benchmarks, there were

only two benchmarks (fop and luindex) where the three profilers agreed on the hottest

method. Thus, profiler disagreement is not an artifact of a particular JVM: we have

encountered it on two production JVMs.

3.2.6 Summary

We have shown that profiler bias is (i) significant—four state of the art Java

profilers often disagree with each other and (ii) commonplace—occurring for most of

our seven benchmarks and in two production Java virtual machines. Because profiler

disagreement implies incorrect profiles, this problem is serious: a researcher may waste

time and effort optimizing a cold method that has little or no impact on overall program

performance.
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3.3 Causality analysis

In the prior sections we showed that profiler bias is significant and commonplace.

In other words, profilers disagree with each other as to the location and magnitude

of a program’s hotspots. Profiler disagreement tells us nothing about which profilers

are correct. When a pair of profilers disagree with each other, we know nothing about

which profiler is “correct”. If we knew the “correct” profile for a program run, we could

evaluate the profiler with respect to this correct profile. Unfortunately, there is no

“correct” profile most of the time and thus we cannot definitively determine if a profiler

is producing correct results.

For this reason, we relax the notion of “correctness” into “actionable”. By saying

that a “profile is actionable” we mean that we do not know if the profile is “correct”;

however, optimizing the hot methods identified by the profile will yield a measurable

benefit. Thus, unlike “correctness” which is an absolute characterization (a profile is

either correct or incorrect), actionable is necessarily a fuzzy characterization.

Section 3.5.3 uses the notion of actionable to evaluate profilers. However, this

approach is not easy: even if we know which methods are hot, we may not be able to

optimize them. Thus, we use a dual of this approach to evaluate profilers: rather than

speeding up hot methods, we slow down hot methods (Section 3.3). If a method is hot,

then slowing it down further should only make it hotter in the profile. If it does not,

then the profile (before or after slowing it down) was not actionable.

In the previous section, we used profiler disagreement to identify that at least one

of the profilers generates incorrect profiles. However, profiler disagreement does not tell

us if any of the profilers produce actionable profiles. One way to check this is to act on

the programs and see if the effects of our actions are reflected in the profiles. Such an

analysis is called a causality analysis [58].

Causality analysis, in our context, proceeds in three steps:
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Intervene: We transform a method, M, to change the time spent in M. The trans-

formation may take the form of code changes or changes to some parameters

that affect the performance of M. For example, we may change the algorithm

in a method or ask it to use a different seed for a random number generator.

Profile: We measure the change in execution time due to the intervention for M and

for the entire program. We use a profiler to determine the time spent in M

before and after the intervention. We use a lightweight approach (e.g., the time

UNIX command) to determine the time spent in the original and intervened

program

Validate: If the profiles are actionable, then the change in the execution time for M

should equal the change in the execution time of the program.

There are two significant difficulties with this approach. First, the most obvious

intervention is to optimize a hot method. However, it is not always easy to speed up a

method; it may be that the method already uses the most clever approach that we can

imagine. This section exploits a key insight to get around this problem: slowing down

a method is often easier than speeding up a method. If the profiles are actionable, they

should attribute the slow down in the program to the slow down in the method.

Second, the goal of our intervention is to affect the performance of a particular

method; however due to memory system effects, our intervention may also affect the

performance of other methods [53]. We take two precautions to avoid these unintended

effects: (i) In this section, we limit interventions to changes in parameters; thus the

memory layout for the method’s code before and after the intervention is the same.

This ensures that our intervention is not impacting performance due to a change in the

program’s memory layout, a change we did not intend. (ii) We use interventions that

are simple (e.g., contains only computation and minimal memory operations). This

ensures that our intervention does not interact with other parts of the program in a way
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we did not intend.

3.3.1 The intervene and profile steps

In this section, we used automatic interventions designed to slow down a program;

in Section 3.5.3 we explore manual interventions designed to speed up a program.

We use a Java agent that uses BCEL (a bytecode re-writing library) to inject the

intervention code into the program. For the data in this section, we insert a while loop

that calculates the sum of the first f Fibonacci numbers, where f is a parameter we

specify in a configuration file. We use a Fibonacci computation for two reasons. First,

Fibonacci has a small memory footprint and does not do any heap allocation. This

simplifies the validation step because we do not need to concern ourselves with memory

system effects. Second, we can easily change the amount of slowdown we induce (i.e.,

the intervention) by altering the value of f . This allows us to change the time spent in

the program and see how that change in time is reflected in the profile; specifically, how

the profiler reports change in time spent in the method containing the Fibonacci code.

Section 3.5 explores the effects of injecting a memory-bound computation in the code.

For each benchmark, we randomly picked two hot methods (from the top-10

hottest methods) for this experiment (second column in Table 3.1); these are the meth-

ods in which we inject the Fibonacci code. For each experiment, we use the methodology

from Section 2 with the exception that we conducted five runs per experiment instead

of 30 to keep experimentation time manageable.

3.3.2 The validate step

Figure 3.7 gives the results of our experiments for two methods: the top graph

gives data for the ByteBuffer.append method from the chart benchmark and the bottom

graph gives data for the PyFrame.setlocal method from the jython benchmark. There

is one set of points for each profiler; the line through the points is a linear fit of the
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Figure 3.7: Does application slowdown match slowdown of the method containing the
Fibonacci loop.

points. We were unable to conduct this experiment for yourkit profiler because it does

its own bytecode re-writing which conflicts with our method for injecting the Fibonacci

code.

The leftmost point is for f = 100; each subsequent point adds 200 to f . A point

(x, y) on a line for profiler, P, says that when the overall execution time of the program

is x seconds, P attributed y seconds of execution time to the method with the Fibonacci

code.

In the perfect case, we expect each profiler’s line to be a straight line with a slope

of 1.0: i.e., the we expect the increase in execution time for the program to exactly

match the increase in the execution time for the method containing the Fibonacci code.

The farther a profiler’s slope is from 1.0 the less actionable is the profile. To make it

easy to see this, we have included an “actionable” line which has a slope of 1.0. In

addition, the numbers in the legend give the slope of each line obtained using a linear

regression on the data.

For the ByteBuffer.append method from the chart benchmark in the top graph,

the hprof and xprof profiler lines have slopes of 0.94 and 0.93, respectively, thus, for

this method, hprof and xprof perform reasonably well. However, jprofile has a slope of

0.65 and thus, it does not perform as well.
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For the PyFrame.setlocal method from the jython benchmark in the bottom

graph, all three profiler lines have a slope close to 0, indicating that the profilers do

not detect any change in the execution time of the method containing the Fibonacci

as we change n! Therefore, none of the three profilers produce actionable data for this

method.

Table 3.1 gives the slopes for all benchmarks and profiler pairs. The last row

gives the average for each profiler. From this table we see that the slopes are rarely

1: in other words, except for rare cases, none of the three profilers produce actionable

data.

3.4 Understanding the cause of profiler bias

Section 3.2 demonstrates that four state-of-the-art Java profilers often disagree

with each other and Section 3.3 demonstrates that the four state-of-the-art Java profil-

ers rarely produce actionable data. This section explores the reason why profilers are

producing non-actionable profiles and why profilers produce biased profiles.

3.4.1 The assumption behind sampling for statistically accurate profiles

The four state-of-the-art Java profilers explored in this chapter all use sampling

to collect profiles. Profilers commonly use sampling to collect data because of its small

overhead. However, for sampling to produce unbiased results, the following two condi-

tions must hold.

First, we must have a large number of samples to get statistically significant

results. For example, if a profiler collects only a single sample in the entire program

run, the profiler will assign 100% of the program execution time to the code in which it

took its sample and 0% to everything else. To ensure that we were not suffering from

an inadequate number of samples, we made sure that all of our benchmarks were long

running; the shortest benchmark ran for 21.02 seconds, which at a sampling interval of
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Benchmark Method slope
hprof xprof jprofile

antlr CharBuffer.fill 0.45 0.24 -0.05
CharQueue.elementAt 0.04 0.00 0.11

bloat PrintWriter.print 0.00 0.13 0.00
PrintWriter.write 0.42 0.23 0.39

chart ByteBuffer.append 0.94 0.93 0.65
ByteBuffer.append i 0.00 0.00 0.00

fop PropertyList.findMaker 0.00 0.00 0.00
PropertyList.findProperty 0.00 0.00 0.01

jython PyType.fromClass 0.22 0.52 0.55
PyFrame.setlocal 0.00 0.00 0.00

luindex jjCheckNAddTwoStates 0.97 1.20 0.99
StandardTokenizer.next 0.00 0.00 0.00

pmd NodeIterator.getFirstChild 0.66 0.90 0.82
JavaParser.jj scan token 0.00 0.00 0.00

mean across methods 0.26 0.28 0.23

Table 3.1: Slope from the linear regression for Fibonacci injection
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10ms (which we used), we get about 2, 100 samples.

Second, the profiler should sample all points in a program run with equal proba-

bility. If a profiler does not do so, it will end up with bias in its profile. For example,

let’s suppose our profiler can only sample methods that contain calls. This profiler will

attribute no execution time to methods that do not contain calls even though they may

account for much of the program’s execution time.

3.4.2 Do our profilers pick samples randomly?

Because we were careful to satisfy the first condition (by using long runs) we

suspected that the profilers were producing non-actionable profiles because they did

not satisfy the second condition.

One statically sound method for collecting random samples is to collect a sample

at every t + r milliseconds. t is desired sampling interval and r is a random number

between −t and t. One might think that sampling every t seconds is enough (i.e., drop

the r component) but it is not: specifically, if we sample every t seconds, we would be

synchronized with any program or system activity that occurs at regular time inter-

vals [49]. For example, let’s suppose that the thread scheduler switches between threads

every 10ms. If our sampling interval was also 10ms then we may always take samples

immediately after a thread switch. Since performance is often different immediately

after a thread switch than at other points (e.g., due to cache and TLB warm-up effects)

we would get biased data. The random component, r, guards against such situations.

Figure 3.8 (a) gives the autocorrelation[37] graph for when we take samples

using the above approach. Intuitively, autocorrelation determines if there is a cor-

relation between a sequence of sampling intervals at one point in the execution and

another point in the execution. More concretely, if the program run produces a se-

quence, (x1, x2, ..., xn), of sampling intervals, Figure 3.8 (a) plots the correlation of the

sequence (x1, x2, ..., xn−k) with (xk, xk+1, ..., xn), for different values of k (k is often
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Figure 3.8: Autocorrelation for (a) jython using random sampling and (b) jython
using hprof .

called the “lag”). Since correlation produces a value in the range [−1, 1], the autocorre-

lation graphs also range from -1 to 1 (we have truncated the y-axis range to make the

patterns more obvious).

As expected, the autocorrelation graph in Figure 3.8 (a), when we take samples

randomly from all points in the program run, looks random. In contrast, consider

the correlation graph for hprof (Figure 3.8 (b)).1 It exhibits a systematic pattern

implying that its sampling intervals at one point in the program run partially predict

sampling intervals at a later point; thus the samples are not randomly picked.

In summary, the autocorrelation graph for our profilers look different from the

autocorrelation graph for randomly picked samples. Thus, our profilers are not using

random samples, which is a requirement for getting correct results from sampling. The

remainder of this section explores the cause of this sampling bias.

3.4.3 What makes the samples not random?

To understand why our profilers were not randomly picking samples from the

program run, we took a closer look at their implementation. We determined that all

four profilers take samples only at yield points [2]. More specifically, when a profiler

1 The autocorrelation graphs for the other profilers are similar and thus we omit them.
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wishes to take a sample, it waits for the program’s execution to reach a yield point.

Yield points are a mechanism for supporting quasi-preemptive thread scheduling

and garbage collection: they are points in the program where it is safe to switch to

a garbage collector or to another thread (e.g., all the GC tables are in a consistent

state [23]). As such, compilers often optimize the placement of yield points. For exam-

ple, as long as the executing code does not allocate memory and does not run for an

unbounded amount of time, it is okay to delay garbage collection; thus, a compiler may

omit yield points from a loop if it can establish that the loop will not do any allocation

and will not run indefinitely. This clearly conflicts with the goal of profilers; in the worst

case, the profiler may wish to take a sample in a hot loop but since that loop does not

have a yield point, the profiler actually takes a sample sometime after the execution of

the loop. Thus, some method other than the one containing the loop may incorrectly

get a sample.

Listing 3.1 demonstrates this problem. The hot method accounts for most of

the execution time of this program and cold accounts for almost none of the execution

time.2 Since hot does not have any dynamic allocation and runs for a bounded amount

of time, the compiler does not put a yield point in it. There is, however, a yield point in

cold since it contains a call (compilers conservatively assume that a call may eventually

lead to memory allocation or recursion). Thus, the cold method incorrectly gets all

the samples meant for the hot method, resulting in a non-actionable profile. Indeed,

the xprof profiler attributes 99.8% of the execution time to the cold method.

In the above example a yield point-based profiler incorrectly attributes a callee’s

sample to a caller. The problem is actually much worse: JIT compilers aggressively

optimize the placement of yield points and unrelated optimizations (e.g., inlining) may

also affect the placement of yield points. Consequently, a profiler may attribute a

2 The key thing about the hot method is that it is expensive compared to cold and does not have
calls or loops. We included this code so you can try it out yourself! We created this example from a
similar situation we encountered in antlr.
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static int [ ] array = new int [ 1 0 2 4 ] ;
public static void hot ( int i ) {

int i i = ( i + 10 ∗ 100) % array . l ength ;
int j j = ( i i + i / 33) % array . l ength ;
i f ( i i < 0) i i = − i i ;
i f ( j j < 0) j j = − j j ;
array [ i i ] = array [ j j ] + 1 ;

}
public static void co ld ( ) {

for ( int i = 0 ; i < I n t eg e r .MAXVALUE; i++)
hot ( i ) ;

}
}

Listing 3.1: Code that demonstrates the problem with using yield points for sampling

method’s samples to another seemingly-unrelated method.

3.4.4 But why do profilers disagree?

While the above discussion explains why our profilers produce non-actionable

profiles, it does not explain why they disagree with each other. If the profilers all use the

yield points for sampling, they should all be biased in the same way and thus produce the

same non-actionable data. This section shows that different profilers interact differently

with dynamic optimizations, which results in profiler disagreement.

Any profiler, by its mere presence (e.g. due to its effect on memory layout, or

because it launches some background threads), changes the behavior of the program

(observer effect). Because different profilers have different memory requirements and

may perform different background activities, the effect on program behavior differs

between profilers. Because program behavior affects the virtual machine’s dynamic

optimization decisions, using a different profiler can lead to differences in the compiled

code.

These differences relate to profiler disagreement in two ways: (i) directly, because

the presence of different profilers causes differently optimized code, and (ii) indirectly,

because the presence of different profilers causes differently placed yield points. While
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Figure 3.9: The observer effect due to profilers

(i) directly affects the performance of the program, (ii) does not affect program per-

formance, but it affects the location of the “probes” which measure that performance.

Our results in Section 3.5 suggest that (ii) contributes more significantly to disagreement

than (i).

Figure 3.9 illustrates how turning on different profilers change a program’s profile

generated by xprof . The graph in Figure 3.9 has one set of bars for each benchmark

and each set has one bar for each of the hprof , jprofile, and yourkit profilers. The height

of the bar quantifies the profiler’s effect on the profile observed by xprof for the hottest

method, M. If xprof attributes x% of execution time to M when no other profiler is

running and y% of execution time to M when a profiler, P, is also running, the P’s bar

will have height abs(x − y).

From this graph we see that profilers significantly and differently affect the time

spent in the hottest method (according to xprof ). This observer effect influences where

the JIT places yield points. To quantify the observer effect, we used a debug build of

Hotspot to count the number of yield points the JIT places in a method. For example,

when we profile with xprof , the JIT placed 9 yield points per method for the hottest 10

methods of antlr, on average. When we used hprof , the JIT placed 7 yield points per

method.

Although the data in Figure 3.9 illustrates how xprof ’s profiles change when other
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profilers simultaneously collect profiles, we see similar behavior when xprof is replaced

by one of the other profilers.

In summary, the observer effect due to profilers affects optimization decisions

which affect the placement of yield points, which in turn results in different biases for

different profilers.

3.5 Testing our hypotheses

The previous sections hypothesized that our profilers produce non-actionable pro-

files because (i) they sample at yield points which biases their profiles and (ii) they

interact with compiler optimizations which affects both program performance and the

placement of yield points. This section presents results from a proof-of-concept profiler

which does not use yield points and shows that this profiler produces actionable profiles.

3.5.1 Implementation

Our proof-of-concept profiler, tprof , collects samples randomly using a t of 10ms

and r being random numbers between −3 and 3 (Section 3.4.2). tprof has two com-

ponents: (i) a sampling thread that sleeps for the sampling interval (determined by

adding together t and a random number, r, for each sample) and then uses standard

UNIX signals to pause the Java application thread and take a sample of the current

executing method; and (ii) a JVMTI agent that builds a map of an x86 code address to

Java methods so that tprof can map the samples back to Java code.

We encountered three challenges in implementing tprof .

First, because the JIT may recompile methods and discard previously compiled

versions of a method, a single map from Java code to x86 instructions is not enough.

Instead, we have different maps at different points in the program execution and the

samples also have a timestamp so tprof knows which map to use.

Second, because tprof operates outside of the JVM, it does not know which
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method is executing when it samples an interpreted method. Thus, tprof attributes

all samples of interpreted code into a special “interpreted method”. This is a source

of inaccuracy in tprof ; we believe this inaccuracy will be insignificant except for short-

running programs which spend much of their time in the interpreter.

Third, Sun Hotspot does not accurately report method locations when inlining is

turned on. Thus, we cannot reliably use tprof if inlining is enabled.

The latter two limitations are implementation artifacts and not a limitation of

profilers that use random sampling.

3.5.2 Evaluating tprof with automatic causality analysis

From Table 3.1 we know that hprof , xprof , and jprofile do not produce actionable

profiles; specifically, they do not correctly attribute the increase in program execution

time to the increase in the time spent computing the Fibonacci sequence. We now

evaluate tprof using the same methodology.

Table 3.2 is similar to Table 3.1 except that (i) it includes data for tprof along

with hprof , jprofile, and xprof ; and (ii) we disabled inlining in the JVM when collecting

data for this table (Section 3.5.1).

First we notice that hprof , xprof , and jprofile all perform slightly better without

inlining than with inlining; Section 3.4.4 explains the reason for this. However, even

with inlining disabled, these profilers usually produce non-actionable data.

From the tprof column we see that tprof performs nearly perfectly: it correctly

attributes the increase in program execution time to an increase in the time spent in

the method that calculates the Fibonacci sequence.

To increase the generality of our results, we repeated the above experiment, this

time injecting a different computation. Specifically, we injected code that allocates an

array of 1024 integers, and loops over a computation that adds two randomly selected

elements in the array. Once again, we found that other profilers did poorly (with slopes
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Benchmark Method slope
tprof hprof xprof jprofile

antlr CharBuffer.fill 1.00 0.78 0.78 0.78
CharQueue.elementAt 1.00 0.00 0.00 0.00

bloat PrintWriter.print 1.00 0.01 0.00 0.00
PrintWriter.write 0.88 0.56 0.23 0.49

chart ByteBuffer.append 0.99 0.91 0.89 0.65
ByteBuffer.append i 0.99 0.00 0.00 0.00

fop PropertyList.findMaker 0.97 0.00 0.00 0.00
PropertyList.findProperty 1.00 0.00 0.00 0.01

jython PyType.fromClass 0.99 0.00 0.00 0.00
PyFrame.setlocal 0.99 0.00 0.00 0.00

luindex jjCheckNAddTwoStates 0.99 0.97 0.97 0.98
StandardTokenizer.next 1.00 0.01 0.01 0.01

pmd NodeIterator.getFirstChild 1.00 0.79 0.75 0.87
JavaParser.jj scan token 1.00 0.01 0.00 0.00

mean across methods 0.99 0.29 0.26 0.27

Table 3.2: Slope from the linear regression for Fibonacci injection (no inlining)
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ranging from 0.18 to 0.37) while tprof performed nearly perfectly (with slope of 1.02)3 .

We had posed three hypotheses for explaining non-actionable data from the pro-

filers: (i) reliance on yield points which led to bias (Section 3.4.3), (ii) interactions

with optimizations which directly affected profiles (Section 3.4.4), and (iii) interactions

with optimizations which affected the placement of yield points and thus bias (Sec-

tion 3.4.4). Our results indicate that tprof , which addresses (i) and (iii) (but not (ii)),

performs nearly perfectly.

3.5.3 Evaluating tprof with real case studies

The previous section used causality analysis with synthetic interventions to eval-

uate the benefit of tprof ’s sampling strategy compared to hprof ’s, xprof ’s, and jprofile’s

sampling strategy. This section uses realistic interventions instead of the synthetic in-

terventions to make the same comparison.

3.5.3.1 Speeding up pmd by 52%

tprof reported that java.util.HashMap.transfer was the hottest method accounting

for about 20% of overall execution time of pmd. In contrast, xprof reported that the

method took up no execution time and the other profilers (hprof , jprofile, yourkit)

reported that three other methods were hotter than this method.

On investigation, we found that pmd creates a HashMap using HashMap’s default

constructor and then adds many elements to the HashMap. These addition cause the

HashMap to repeatedly resize its internal table, each time transferring the contents from

the smaller table to the larger table. Based on tprof ’s report, we changed the HashMap

allocation to use the non-default constructor which pre-allocated 100K entries for the

table, thus decreasing the number of times it has to resize the table.

This one line code change sped up the program by 52% with inlining (i.e., the

3 We have omitted the full set of results due to space limitations.
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default configuration for the JVM) and 47% without inlining 4 . These performance im-

provements actually exceed tprof ’s prediction; we exceeded tprof ’s predictions because

reducing the resizings also reduced the amount of memory allocation, which translated

in to better memory system and garbage collector performance.

3.5.3.2 Speeding up bloat by 50%

tprof reported that java.util.AbstractMap.containsValue was the hottest method

accounting for 45% of program execution time in bloat. The other profilers reported

that AbstractMap.containsValue took up 22% of program execution time and reported

that other methods were hotter than java.util.AbstractMap .containsValue.

On investigation we found that bloat frequently calls AbstractMap .containsValue

as part of an assertion. AbstractMap.containsValue does a linear search through the

values of a map and thus takes time proportional to the number of values in that map.

We removed this call by commenting out the assert statement (this does not affect

behavior of the program, just the checking of program invariants at run time).

As a result of this change, bloat sped up by 50% with inlining and 47% without

inlining. tprof immediately directed us to this method as the slowest method and even

predicted the speedup we got (within 2%). If we had followed the advice of the other

profilers, we would still have found this method but not before we had looked at several

other methods first.

3.5.4 Summary

Using a combination synthetic and real causality analysis, we have demonstrated

that a proof-of-concept profiler, tprof , which uses random sampling, produces actionable

data.

4 We report the performance improvements with both the default JVM configuration and the one
with inlining disabled because we collected the profiles with inlining disabled; recall that tprof cannot
currently handle inlining.
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3.6 Conclusion

What do we do when our program has a performance problem? We use a profiler

to find the hot methods in the program and then optimize these methods to speed up

the program. If the program does not speed up as predicted by the profile, we typically

blame it on a poor interaction with the memory system or our lack of understanding of

the underlying hardware, but we never blame the profiler. In this chapter, we surpris-

ingly demonstrate that four state-of-the-art Java profilers (xprof , hprof , jprofile, and

yourkit) often produce incorrect profiles.

We use causality analysis to determine two reasons for why the four profilers

produce incorrect profiles. First, the profilers only sample at yield points, a JVM

mechanism for supporting quasi-preemptive thread scheduling and garbage collection.

Only taking samples at yield points introduces bias into a profile. Second, the profilers

perturb the program being optimized (i.e. observer effect) and thus change how the

dynamic compiler optimizes the program and places yield points in the optimized code.

Our results are disturbing because they indicate that profiler incorrectness is

pervasive – occurring for most of our seven benchmarks and in two production JVM

– and significant – all four of the state-of-the-art profilers produce incorrect profiles.

Incorrect profiles can easily cause a performance analyst to spend time optimizing cold

methods that will have minimal effect on performance. We show that a proof-of-concept

profiler that does not use yield points for sampling does not suffer from the above

problems.
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Trusting our evaluations

Systems researchers often use experiments to drive their work: they use experi-

ments to identify bottlenecks and then again to determine if their ideas for addressing

the bottlenecks are effective. If the EVALUATION of an experiment is biased, a re-

searcher may draw an incorrect conclusion: she may end up wasting time on something

that is not really a problem and may conclude that her idea is beneficial even when it

is not.

In this chapter we show experimental setups often bias our EVALUATIONS. For

example, consider a researcher who wants to determine if idea I is beneficial for system

S. If she measures S and S + I in an experimental setup that favors S + I, she may

conclude that I is beneficial even when it is not. This phenomenon is called measurement

bias in the natural and social sciences. This chapter shows that measurement bias is

commonplace and significant: it can easily lead to an EVALUATION that yields incorrect

conclusions.

This chapter demonstrates measurement bias by exploring if gcc’s O3 optimiza-

tions are beneficial for performance (i.e., the I is the optimizations implemented by

optimization level O3). To explore the effect of measurement bias we consider exper-

imental setups that affect the memory layout of running programs. Specifically, we

consider experimental setups that differ along two dimensions: (i) UNIX environment

size (i.e., total number of bytes required to store the environment variables) because
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it affects the alignment of stack data; and (ii) link order (the order of .o files that we

give to the linker) because it affects code layout. There are numerous ways of affecting

the alignment and layout of code and data; we picked two to make the points in this

chapter but we have found similar phenomena with the others that we have tried.

We show that changing the experimental setup often leads to contradictory con-

clusions about the speedup of O3. By “speedup of O3” we mean run time with op-

timization level O2 divided by run time with optimization level O3. To increase the

generality of our results, we present data from two microprocessors, Pentium 4 and

Core 2, and one simulator, m5 (O3CPU) [10]. To ensure that our results are not limited

to gcc, we show that the same phenomena also appear when we use Intel’s C compiler

instead of gcc.

We show that there are no obvious ways of avoiding measurement bias because

measurement bias is unpredictable. For example, the best link order on one micropro-

cessor is often not the best link order on another microprocessor and increasing the

UNIX environment size does not monotonically increase (or decrease) the benefit of the

O3 optimizations. Worse, because hardware manufacturers do not reveal full details of

their hardware it is unlikely that we can precisely determine the causes of measurement

bias. Sections 4.3.1.2 and 4.3.2.2 discuss potential causes of measurement bias.

We show, using a literature survey of 133 recent papers from ASPLOS, PACT,

PLDI, and CGO, that prior work does not carefully consider the effects of the measure-

ment bias. Specifically, to avoid measurement bias, most researchers use not a single

workload, but a set of workloads (e.g., all programs from a SPEC benchmark suite in-

stead of a single program) in the hope that the bias will statistically cancel out. For this

to work, we need a diverse set of workloads. Unfortunately, most benchmark suites have

biases of their own and thus will not cancel out the effects of measurement bias; e.g.,

the DaCapo group found that the memory behavior of the SPEC JVM98 benchmarks

was not representative of typical Java applications [11]. We experimentally show that
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at least the SPEC CPU2006 (CINT and CFP, C programs only) benchmark suite is not

diverse enough to eliminate the effects of measurement bias.

Finally, this chapter discusses and demonstrates one technique for avoiding mea-

surement bias and one technique for detecting measurement bias. Because natural and

social sciences routinely deal with measurement bias, we derived our two techniques

directly from techniques in these sciences. The first technique, experimental setup ran-

domization (or setup randomization for short), runs each experiment in many different

experimental setups; these experiments results in a distribution which we summarize

using statistical methods to eliminate or reduce measurement bias. The second tech-

nique, causal analysis [58], establishes confidence that the outcome of the performance

analysis is valid even in the presence of measurement bias.

The remainder of the chapter is structured as follows. Section 4.1 explores the

origin of measurement bias. Section 4.2 presents our experimental methodology. Sec-

tion 4.3 shows that measurement bias is significant and commonplace. Section 4.4

demonstrates that measurement bias is unpredictable. Section 4.5 shows that prior

work does inadequately address measurement bias. Section 4.6 presents techniques for

dealing with bias. Section 4.7 discusses what hardware and software communities can

do to help with measurement bias. Finally, Section 4.8 concludes.

4.1 Origin of measurement bias

In Chapter 1.2 and Figure 1.1 we demonstrated that program performance is

sensitive to the experimental setup in which we measure performance. an insignificant

and seemingly irrelevant change can dramatically affect the performance of the system.

As a consequence of this sensitivity, we will find that different experimental setups will

produce different outcomes. If we happen to run our experiments in an experimental

setup that has a “pessimistic” (“optimistic”) bias to our experiments, our results would

look artificially worse (better) than they really are. It is the sensitivity of computer



www.manaraa.com

47

systems that causes measurement bias.

4.2 How measurement bias affects evaluations

In a comparison between two systems, S1 and S2, measurement bias arises when-

ever the experimental setup favors S1 over S2 or vice versa. Thus, measurement bias

can make it appear that one system (e.g., S1) is superior to another system (e.g., S2)

even when it is not.

Measurement bias is well known to medical and other sciences. For example,

Ioannidis [43] reports that in a survey of 49 highly-cited medical articles, later work

contradicted 16% of the articles and found another 16% had made overly strong claims.

The studies that contradicted the original studies used more subjects and random trials

and thus probably suffered less from measurement bias.

This chapter considers two sources of measurement bias: (i) the UNIX environ-

ment size which affects the start address of the stack and thus data alignment; and (ii)

link order which affects code layout. We picked these sources because it is well known

that program performance is sensitive to memory layout and thus anything that affects

memory layout is also likely to exhibit measurement bias.

There are numerous other sources of measurement bias. For example the room

temperature affects the CPU clock speed and thus whether the CPU is more efficient in

executing memory-intensive codes or computationally-intensive codes [24]. As another

example, the selection of benchmarks also introduces measurement bias; a benchmark

suite whose codes have tiny working sets will benefit from different optimizations than

codes that have large working sets. It is not the goal of our chapter to expose all sources

of measurement bias; instead, the goal is to show that measurement bias exists and one

needs to use techniques such as the ones described in Section 4.6 to deal with it.
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Figure 4.1: The effect of link order on the speedup of O3 on Core 2.

4.3 Measurement bias is significant and commonplace

This section shows that measurement bias is significant and commonplace. By

significant we mean that measurement bias is large enough to lead to incorrect conclu-

sions. By commonplace we mean that it is not an isolated phenomenon but instead

occurs for all benchmarks and architectures that we tried.

We quantify measurement bias with respect to the following question: how effec-

tive are the O3 optimizations in gcc? By “O3 optimizations” we mean optimizations

that O3 introduces (i.e., it does not include optimizations that carry over from O2).

4.3.1 Measurement bias due to link order

We first show the measurement bias due to link order and then discuss one po-

tential cause for it.

4.3.1.1 The extent of measurement bias

Figure 4.1 (a) explores the effect of link order on the speedup of O3 for perlbench.

To obtain this data, we compiled perlbench 33 times; the first time we used the de-

fault link order (as specified by the make file), the second time we used an alphabetical

link order (i.e., the .o files appeared in alphabetical order), and the remaining times we

used a randomly generated link order. A point (x, y) in Figure 4.1 (a) says that for the
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xth link order we tried, the speedup of O3 was y. For each point, we conducted five

runs each with O2 and O3 ; the whiskers give the 95% confidence intervals around the

mean.

There are two important points to take away from this graph. First, depending

on link order, O3 either gives a speedup over O2 (i.e., y value is greater than 1.0) or a

slow down over O2 (i.e., y value is less than 1.0). Second, some randomly picked link

orders outperform both the default and alphabetical link orders. Because we repeated

the experiment for each data point multiple times, these points are not anomalies but

true reproducible behavior.

Figure 4.1 (b) uses a violin to summarize similar data for all benchmarks. Each

violin summarizes data for all the link orders for one benchmark; e.g., the perlbench

violin summarizes Figure 4.1 (a). The white dot in each violin gives the median and the

thick line through the white dot gives the inter-quartile range. The width of a violin at

y-value y is proportional to the number of times we observed y. The “+” and “×” points

in each violin give the data for the default and alphabetical link orders respectively.

From Figure 4.1 (b) we see that the violins for five benchmarks (libquantum,

perlbench, bzip2, sphinx and lbm) straddle 1.0; thus, for these benchmarks, we

may arrive at conflicting conclusions about the benefit of the O3 optimizations depend-

ing on the link order that we use. On the Pentium 4 the results are even more dramatic:

all of the violins for the non-FP benchmarks straddle 1.01 .

In Figure 4.1 (b) the differences between the maximum and minimum points of

a violin are particularly instructive because they give an indication of how much bias

one can end up with. On the Core 2 the median difference between the minimum and

maximum points is 0.02 while for the Pentium 4 the median difference is 0.08. Thus, the

measurement bias due to link order is significant: we can arrive at significantly different

1 Due to time limitations, we did not collect the data for the three SPEC CPU2006 CFP benchmarks
on the Pentium 4.
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(on average 2% for Core 2 and 8% for Pentium 42 ) conclusions about the speedup of

O3 depending on our experimental setup.

We repeated a selection of the above experiments on the m5 simulator using

the O3CPU model [10]. We used smaller inputs for the m5 experiments because the

train inputs took too long to simulate. We found that changing link order also caused

measurement bias on the simulator; for example for bzip2 the speedup of O3 ranged

from 0.8 to 1.1 as a result of different link orders. Thus, measurement bias due to link

order is commonplace: we found it on all three machines (one simulated) and all the

benchmarks that we tried.

4.3.1.2 The potential causes of measurement bias

What causes measurement bias due to link order on the Core 2? Changing a

program’s link order can affect performance in a number of ways. For example, link

order affects the alignment of code, causing conflicts within various hardware buffers,

branch prediction, etc. The link order may affect different programs differently; in one

program it may affect the alignment of code in the instruction queue and in another

program it may affect conflict misses in the instruction cache. We believe, at least for

some benchmarks, the link order affects whether or not the loop-stream detector (LSD)

on the Core 2 is able to lock a loop into the instruction queue.

On the Core 2 microprocessor, all branches, including taken ones, incur a penalty.

To avoid this penalty, the LSD is a logical unit that tries to detect loops and locks them

in to a four 16-byte entry instruction queue. Once a loop is locked, it does not incur a

penalty on the taken (backward) branch. To test whether link order was interacting with

the LSD, we examined the alignment of all loops in the libquantum benchmark and

found that the alignment of a key loop (in the toffoli function) correlates with the

performance of the program. Specifically, this loop is 52 bytes in size (and is thus small

2 As noted above, the 8% reflects only the SPEC CPU2006 CINT benchmarks.
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enough to fit in the 64-byte instruction queue if aligned properly) and libquantum

performs better if this loop is aligned on a 64-byte boundary than on any other boundary

(we tried all multiple-of-eight boundaries up to 64).

While we know that the alignment of this key loop correlates with performance

and we believe the alignment affects the operation of the LSD, we are unable to conclu-

sively confirm that the LSD is responsible for measurement bias; indeed, there might

be other causes. To confirm this explanation we need (i) to know exactly how the LSD

operates so we can look at a loop and determine if the LSD would detect it; (ii) more

cooperation from the hardware which allows us to collect data that directly measures

the behavior of the LSD, and (iii) perhaps even a mechanism for disabling the LSD.

Unfortunately we have none and thus we can only provide educated guesses for what,

exactly, in the hardware causes a certain performance anomaly.

More generally, we find that inadequate information from hardware manufacturers

and from the hardware severely cripples our ability to (i) understand the performance

of a system and to (ii) fully exploit the capabilities of the hardware.

For example, we used Intel’s high-level description of how the LSD works (in

Sections 2.1.2.3 and 3.4.2.4 of Intel’s Optimization Reference Manual [41]) to write

a small loop that should benefit from the LSD. We then unrolled this loop so that

it should not benefit from the LSD (the loop became too large and also failed other

criteria required by the LSD). We expected the original loop to be significantly faster

but instead we found that both loops took the same amount of time. After a full day

of exploration where we tweaked both loops we were still unable to come up with an

example where one loop conclusively benefited from the LSD and one did not. Clearly,

this lack of information about the LSD, specifically, and the hardware, in general, hurts

both the users (who cannot get the best performance from their machine investments)

and hardware manufacturers (their machines appear slower because compiler writers do

not have the knowledge to use hardware features most effectively).



www.manaraa.com

52

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

0.90

0.95

1.00

1.05

1.10

bytes added to empty environment

c
y
c
le

s
(O

2
) 

/ 
c
y
c
le

s
(O

3
)

(a) Perlbench

0.90

0.95

1.00

1.05

1.10

g
c
c

lib
q
u
a
n
tu

m

p
e
rl
b
e
n
c
h

b
z
ip

2

h
2
6
4
re

f

m
c
f

g
o
b
m

k

h
m

m
e
r

s
je

n
g

s
p
h
in

x

m
ilc

lb
m

l

l

l
l

l
l

l l

l

l

l

l

c
y
c
le

s
 (

O
2
) 

/ 
c
y
c
le

s
 (

O
3
)

(b) All Benchmarks

Figure 4.2: The effect of UNIX environment size on the speedup of O3 on Core 2.

4.3.2 Measurement bias due to UNIX environment size

We first show the measurement bias due to environment variables and then discuss

two potential causes for it.

4.3.2.1 The extent of the measurement bias

Figure 4.2 (a) shows the effect of UNIX environment size for perlbench on

the speedup of O3. The leftmost point is for a shell environment of 0 bytes (the null

environment); all subsequent points add 63 bytes to the environment. To increase the

UNIX environment size, we simply extend the string value of a dummy environment

variable that is not used by the program.

A point (x, y) says that when the UNIX environment size is x bytes, the speedup

of O3 is y. We generated this data using the bash shell We computed each point using

five runs each with O2 and O3 ; the error bars give the 95% confidence intervals around

the mean. The tight confidence intervals mean that our runs are easily reproducible.

We repeated these experiments with other commonly-used shells and obtained similar

results.

The most important point to take away from this graph is that depending on the

shell environment size we may conclude that (i) the O3 optimizations are beneficial (i.e.,

the y value is greater than 1.0); (ii) the O3 optimizations degrade performance; and
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(iii) increasing the UNIX environment size does not predict the O3 speedup because as

the size increases speedup increases and decreases! Because we repeated the experiment

for each data point multiple times, these points are not anomalies but true reproducible

behavior.

Figure 4.2 (b) summarizes similar data across all benchmarks. Each violin gives

the data for one benchmark and plots all the points for the benchmark (each point cor-

responds to a particular UNIX environment size). The perlbench violin summarizes

Figure 4.2 (a). We see that four of the violins (libquantum, perlbench, sphinx

and lbm) straddle 1.0: this means that depending on the experimental setup, one can

end up with contradictory conclusions about the speedup of O3. On the Pentium 4, our

results are even more dramatic: the violins of six benchmarks straddle 1.0.

In Figure 4.2 (b), the difference between the maximum and minimum points of a

violin are particularly instructive because they give an indication of how much of a bias

one can end up with. The most extreme is lbm which ranges from 0.88 (i.e., a significant

slowdown due to O3 optimizations) to 1.09 (i.e., a healthy O3 speedup) . The median

difference between the extreme points on the Core 2 is 0.01 and on the Pentium 4 is 0.04.

Thus, while smaller than measurement bias due to link order, the measurement bias due

to UNIX environment size is still large enough to obfuscate experimental results [46].

4.3.2.2 The potential causes of the measurement bias

What causes the measurement bias due to environment variables on the Core 2?

So far we have uncovered two high-level reasons.

The first reason is that the UNIX environment size affects the starting address of

the C stack. Thus, by changing the UNIX environment size, we are effectively changing

the address and thus the alignment of stack variables in various hardware buffers; also

many algorithms in hardware (e.g., to detect conflicts between loads and stores) depend

on alignments of code or data. We verified our explanation by always starting the
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stack at the same location while changing the UNIX environment size; we got the same

O3 speedup (for all benchmarks except perlbench) with different UNIX environment

sizes, thus confirming that it was the stack starting location that affected O3 speedup.

The second reason (which applies only to benchmark perlbench) is that when

perlbench starts up, it copies contents of the UNIX environment to the heap. Thus,

using different UNIX environment sizes effectively changes the alignment of heap-allocated

structures in various hardware buffers in addition to the alignment of stack allocated

variables. We confirmed this explanation by always fixing the start address of the heap

so that all of our different UNIX environments would fit below it. With these exper-

imental setups, we found that different UNIX environment sizes had a much smaller

impact on the speedup of O3. The first reason described above (i.e., UNIX environment

size affects stack start address) causes the residual bias.

While the above two reasons provide a high-level causal analysis, we would like

to understand the underlying causes in more detail. In particular we would like to

know which hardware structure interacted poorly with which stack variables. For this

study we intervened on the code of perlbench and fixed the heap start address so as

to focus entirely on the effects due to shifting the stack address. We picked the two

stack alignments that lead to the fastest and the slowest execution time. For both of

these alignments we ran perlbench multiple times in order to capture all the Core 2

performance events provided by perfmon. Out of these 340 events, 42 events differed

by more than 25%. One event stood out with a 10-fold increase in its event count:

LOAD BLOCK:OVERLAP STORE, the number of loads blocked due various reasons,

among them loads blocked by preceding stores.

At a high level, we found that the alignment of stack variables was probably

causing the measurement bias. At a low level, we found that the LOAD BLOCK:

OVERLAP STORE was probably causing the measurement bias. What is the connec-

tion? The hardware uses conservative heuristics based on alignment and other factors
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to determine load-store overlaps. By changing the alignment of stack variables, we

have probably affected the outcome of the hardware heuristics, and thus the number of

load-store overlaps.

To increase our confidence in the hypothesis that the load-store overlap is respon-

sible for the measurement bias, we would need further support from the hardware. In

particular, if we could map events to program locations, we could determine whether

these load blocks happen due to stack accesses, and we would be able to point out

which stack locations are responsible for these conflicts. The Core 2 already provides

such support through PEBS. Unfortunately, PEBS supports only a very limited set of

events, and LOAD BLOCK:OVERLAP STORE is not part of that set.

4.3.3 Did gcc cause measurement bias?

So far our experiments all used the gcc compiler. If gcc does not take the align-

ment preferences of the hardware into consideration, perhaps because the hardware

manufacturers do not reveal these preferences, then code compiled with gcc may be

more vulnerable to measurement bias. Thus, we repeated our experiments with Intel’s

ICC compiler; we expected that the Intel compiler would exhibit little measurement

bias. We were wrong.

Figure 4.3 (a) presents data similar to Figure 4.1 (b) and Figure 4.3 (b)

presents data similar to Figure 4.2 (b) except that it uses Intel’s C compiler instead

of gcc. We see that we get measurement bias also with Intel’s C compiler. For our

experiments with link order, the violins for 10 (6 for gcc) of the benchmarks straddle

1.0 and the median height of the violins is 0.03 (0.02 for gcc). For our experiments

with UNIX environment size, 6 (4 for gcc) of the violins straddle 1.0 and the median

height of the violins is 0.006 (it was 0.01 with gcc). Thus, code compiled with Intel’s C

compiler exhibits similar measurement bias than gcc.
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Figure 4.3: Measurement bias in Intel’s C compiler on Core 2.

4.3.4 Summary

We have shown that measurement bias is significant and commonplace:

• Measurement bias is significant because it can easily mislead a performance

analyst into believing that one configuration is better than another whereas if

the performance analyst had conducted the experiments in a slightly different

experimental setup she would have concluded the exact opposite.

• Measurement bias is commonplace because we have observed it for all of our

benchmark programs, on three microprocessors (one of them simulated), and

using both the Intel and the GNU C compilers.

4.4 Measurement bias is unpredictable

If measurement bias is predictable then it should be easy to avoid. Unfortunately,

we found that measurement bias is not easily predictable.

In Figure 4.2 (a) we saw for perlbench that increasing the UNIX environment

size can make O3 appear better or worse. Thus, increasing the UNIX environment size

does not always translate to consistently more (or less) bias.

Moreover, Figure 4.4 shows for perlbench that measurement bias on one ma-

chine does not predict measurement bias on another machine. Figure 4.4 (a) presents
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Figure 4.4: Measurement bias on Core 2 versus Pentium 4 for perlbench.

data for link order. A point (x,y) says that there is a link order that gives an execution

time x on the Pentium 4 and an execution time y on the Core 2. The two circled points

represent the best link order for each of the machines: The leftmost circled point rep-

resents the best link order for Pentium 4 and the bottom-most circled point represents

the best link order for the Core 2. Because the points are not the same, the best link

order for one machine is not the best link order for the other.

This insight is of particular interest to the software vendors who distribute their

software already linked. If they tune link order for a particular machine, there is no

guarantee that the link order will provide the best performance on a different machine.

Figure 4.4 (b) presents data for UNIX environment size. A point (x,y) says

that there is a UNIX environment size that gives an execution time x on the Pentium 4

and an execution time y on the Core 2. The two circled points represent the best UNIX

environment size for each of the machines: the leftmost circled point represents the best

for Pentium 4 and the bottom-most circled point represents the best for the Core 2.

Because the points are not the same, the best UNIX environment size for one machine

is not the best for the other.

In summary, the UNIX environment size does not predict performance. Fur-

thermore, the best link order or best UNIX environment size on one machine is not

necessarily the best on another machine.
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4.5 Literature review

Researchers in computer systems either do not know about measurement bias or

do not realize how severe it can be. For example, we found that none of the papers

in APLOS 2008, PACT 2007, PLDI 2007, and CGO 2007 address measurement bias

satisfactorily.

We picked these conferences because they are all highly selective outlets for exper-

imental computer science work. Of the 133 papers published in the surveyed conference

proceedings, 88 had at least one section dedicated to experimental methodology and

evaluation. The remainder of this review focuses on these 88 papers. When some-

thing was not clear in a paper, we always gave the benefit of the doubt to a paper’s

methodology.

4.5.1 Papers that use simulations

Many researchers use simulations because simulators enable them to try out hy-

pothetical architectures. 36 of the 88 papers we reviewed used simulations. As we have

shown in Section 4.3.1, even simulations suffer from measurement bias.

4.5.2 Papers that report speedups

If the ideas in a paper result in huge (e.g., many-fold) improvements, then one may

argue that the improvements are a result of the ideas and not artifacts of measurement

bias. However, we found that the median speedup reported by these papers was 10%;

in Section 4.3 we show the measurement bias large enough to easily obfuscate a 10%

speedup.
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4.5.3 Papers that acknowledge measurement bias

In this paper, we focus on two specific instances of measurement bias (UNIX en-

vironment size and link order) and demonstrate that they can cause invalid conclusions.

Although none of the papers we reviewed said anything about measurement bias due to

UNIX environment size or link order, most (83) papers used more than one benchmark

(with a mean number of benchmarks being 10.6±1.8) or input sets for their evaluation.

If we use a sufficiently diverse set of workloads along with careful statistical methods,

most measurement bias should get factored out. However, as we show in Section 4.6.1.1,

this is a partial solution; significant measurement bias may remain even with a large

benchmark suite. Indeed even with our 12 benchmarks we still see large measurement

bias.

4.6 Our solutions: detecting and avoiding measurement bias

Measurement bias is not a new phenomenon and it is not limited to computer

science. To the contrary, other sciences have routinely dealt with it. For example,

consider a study that predicts the outcome of a nationwide election by polling only a

small town. Such a study would lack all credibility because it is biased: it represents only

the opinions of a set of (probably) like-minded people. This is analogous to evaluating

an optimization in only one or a small number of experimental setups. Given that our

problem is an instance of something that other sciences already deal with, our solutions

are also direct applications of solutions in other sciences.

4.6.1 Evaluate innovations in many experimental setups

The most obvious solution to the polling-a-small-town problem is to poll a diverse

cross section of the population. In computer systems we can do this by using a diverse

set of benchmarks or by using a large set of experimental setups or both.
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4.6.1.1 Using a large benchmark suite

If we use a sufficiently diverse set of workloads along with careful statistical meth-

ods, most measurement bias should get factored out. Unfortunately, there is no reason

to believe that our benchmark suites are diverse; indeed there is some reason to believe

that they themselves are biased. For example, the designers of the DaCapo benchmark

suite found that the commonly used benchmark suite, SPEC JVM98, was less memory

intensive than real workloads [11]. As a consequence, the SPEC JVM98 benchmarks

may be biased against virtual machines with sophisticated memory managers.
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Figure 4.5: Distribution of speedup due to O3 as we change the experimental setup.

Figure 4.5 evaluates whether or not our benchmark suite (see Table 2.1) is

diverse enough to factor out measurement bias due to memory layout. To generate this

figure, we measured the speedup of O3 for all benchmarks in 66 different experimental

setups; these setups differ in their memory layouts. For each setup we generated one

number: this number is the average speedup of the entire suite for that experimental

setup. Figure 4.5 plots the distribution of these average speedups; specifically the height

of a bar at x-value x gives the number of experimental setups when we observed the

average speedup x.

If our benchmark suite was diverse enough to factor out measurement bias, we

would see a tight distribution; in other words, varying the experimental setup would

have had little impact on the average speedup across the benchmark suite. Instead,
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Figure 4.6: Using variant generation to determine the speedup of O3 for perlbench.
At a 95% confidence interval, we estimate the speedup to be 1.007 ± 0.003.

we see that there is a 7% variation in speedup between different experimental setups.

Thus, our benchmark suite is not diverse enough to factor out measurement bias due

to memory layout.

While our results are disappointing, they do not preclude the possibility that a

well designed benchmark suite may factor out measurement bias due to memory layout.

While we may be tempted to create such a suite by combining existing benchmark suites,

we should point out that it is not the size of the benchmark suite that is important;

it is the diversity of the suite that determines whether or not the suite can factor our

measurement bias.

4.6.1.2 Experimental setup randomization

In this approach, we generate a large number of experimental setups by varying

parameters that we know to cause measurement bias. Thus we measure the systems

being compared, S1 and S2, in each of these experimental setups. This process results

in two distributions: one for S1 and one for S2. Finally, we use statistical methods, such

as the t-test, to compare the distributions to determine if S1 is better than S2.

Figure 4.6 shows the distributions we get when we vary link order and UNIX

environment size for the perlbench benchmark. For this figure we used 484 measure-
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ment setups (using a cross product of 22 linking orders and 22 environment variable

sizes). We conducted 3 runs for each combination of experimental setup and benchmark

to mitigate the effects of inter-run variation. We then used the t-test to see if there is

any statistically significant difference in the means between the two distributions3 . Us-

ing this test we found that at the 95% confidence interval the mean speedup ratio was

1.007 ± 0.003; in other words, O3 optimizations speed up the program (because the

ratio is greater than 1).

While this approach is certainly better than using just a single experimental setup,

it is not perfect: if we do not vary the experimental setup adequately then we may still

end up with measurement bias for a different bias. This is one of the reasons why in

other sciences it is not uncommon to find contradictions. For example Ioannidis [43]

reports that as many has 32% of the most high-profile studies in medicine were later

found to be either incorrect or exaggerated; the later studies used larger sample sizes

and thus because they used randomized trials, presumably less bias.

4.6.2 Using causal analysis

Causal analysis is a general technique for determining if we have reached an

incorrect conclusion from our data [58]. The conclusion may be incorrect because our

data is tainted or because we arrived at the conclusions using faulty reasoning.

At an abstract level, let’s suppose we arrive at the following conclusion: X caused

Y . Now, it may be the case that there are many other possible causes of Y (e.g., Z); so

we wish to check whether or not our conclusion is valid. To achieve this, causal analysis

takes the following steps:

(1) Intervene: We devise an intervention that affects X while having a minimal

effect on everything else.

3 See Georges et. al [34] or most statistics texts for a description of this calculation.
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(2) Measure: We change our system with the intervention and measure the changed

system.

(3) Confirm: If Y changed as we would expect if X had caused Y then we have

reason to believe that our conclusion is valid.

Earlier in the chapter we have already seen examples of such reasoning. For

example, we had arrived at the conclusion: Changing UNIX environment size causes a

change in start address of the stack which causes a change in O3 speedup.

We were easily able to verify the first “causes” by noting that when we changed

UNIX environment size by b bytes, the address of stack variables also shifted by b bytes

(modulo appropriate alignment). For the second “causes” we had to use causal analysis

as follows:

(1) Intervene: We fixed the starting address of the stack so that regardless of the

UNIX environment size (up to 4096 bytes) the stack always started at the same

address.

(2) Measure: We varied the UNIX environment size (up to 4096 bytes) and calcu-

lated the O3 speedups for each environment size.

(3) Confirm: We confirmed that the UNIX environment size did not affect O3

speedup, thus giving credibility to our conclusion.

Using the above analysis, we were able to confirm our conclusions for all bench-

marks except perlbench. For perlbench our causal analysis rejected our conclusion

and we had to come up with a different conclusion which we then confirmed. There

are typically many ways of conducting a causal analysis. For example, we could have

picked a different intervention: change the starting address of the stack while always

using the same environment variables. Also, while causal analysis gives us confidence



www.manaraa.com

64

that our conclusions are correct, it does not guarantee them; this is a fact of life that

all experimental sciences have to contend with.

In contrast to setup randomization, causal analysis is not an attempt to get

“untainted” data; instead it is a way to gain confidence that the conclusions that we

have drawn from our data are valid even in the presence of measurement bias.

In the context of this chapter, the conclusions that we have been exploring are

of the form: “O3 optimizations improve performance”. To apply causal analysis we

may need to modify the optimizations so that we can determine if the performance

improvement is due to the optimization; and not due to a lucky interaction between the

optimization and the experimental setup.

4.6.3 Summary

We have described and demonstrated two approaches: one for avoiding and one

for detecting measurement bias. Our first approach is to collect data in not one but

many (varied) experimental setups and then use statistical techniques to factor out

measurement bias from the data. This approach actually tries to avoid measurement

bias. Our second approach is to use causal analysis to check the validity of conclusions

we draw from the data. This approach detects when measurement bias has led us to an

incorrect conclusion.

Neither of these techniques are perfect. For example, even if we use a large

number of experimental setups we may still not adequately cover the space of possible

experimental setups. This problem, however, is not surprising: natural and social sci-

ences also routinely deal with measurement bias using the same techniques we propose

and they too find that occasionally even with the best methodology they end up with

incorrect conclusions.
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4.7 A call to action

We have shown that measurement bias poses a severe problem for computer sys-

tems research. While we have also presented approaches for detecting and avoiding

measurement bias, these techniques are not easy to apply; this section discusses what

the software and hardware communities can do to make these techniques more easily

and widely applicable.

4.7.1 Diverse evaluation workloads

If we conduct our measurements over diverse workloads and use statistical meth-

ods to draw conclusions from these measurements we will reduce or perhaps even avoid

measurement bias in our data. Section 4.6.1.1 shows that at least the C programs in

the SPEC CPU2006 benchmark suite are not diverse enough to avoid measurement

bias. Efforts, such as the Dacapo benchmarks [11], go to some length to ensure diver-

sity within the suite; we need more efforts like this for different problem domains and

programming languages.

4.7.2 Identify more ways of randomizing experimental setup

It is well known that memory layout impacts performance; this is why we varied

the memory layout to generate different experimental setups. However, there are many

other features of the experimental setup that also cause measurement bias; The natural

and social sciences, based on long experience, have identified many sources of measure-

ment bias in their domains; e.g., gender and education are both sources of measurement

bias when we are trying to predict the outcome of a presidential election. We need to

go through the same process and use that knowledge to build tools that automatically

generate randomized experimental setups; this way a systems researcher can start from

a good baseline when conducting her experiments.
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4.7.3 More information from the hardware manufacturers

If we do not know the internal details of a microprocessor, it can be nearly im-

possible to (i) fully understand the performance of even a microkernel running on the

microprocessor; and (ii) fully exploit the microprocessor to obtain peak performance.

Sun Microsystems has already taken the lead by releasing all details of one of their

microprocessors (the OpenSparc project); we hope other manufacturers will follow.

4.7.4 More cooperation from the hardware

Especially for causal analysis it is helpful if we can (i) collect data from ma-

jor components of the microprocessor (e.g., caches); (ii) enable and disable optional

hardware features; and (iii) map hardware events back to software.

Regarding (i), all modern microprocessors support hardware performance moni-

tors, which allow us to collect data from some components of the hardware. Unfortu-

nately, these metrics are often inadequate: for example, the Core 2 literature advertises

the LSD as a significant innovation but fails to include any support for directly collect-

ing data on the performance of this feature. We hope that in the future hardware will

include metrics for at least all of the major components of the hardware.

Regarding (ii), some microprocessors allow us to enable or disable certain features.

For example, the Core 2 allows us to enable and disable some forms of prefetching.

However, there are many features that we cannot control in this way; for example there

is no way to disable the LSD. We hope that in the future hardware will allow us to

disable many more features.

Regarding (iii), precise event based sampling (PEBS) is invaluable: it enables us

to map certain events to specific instructions. However, PEBS support is still overly

limited; for example, Table 18.16 of Intel’s Software Developer’s manual [42] lists only

nine events that PEBS supports. We hope that in the future hardware will allow us to
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map all events to specific instructions.

4.8 Conclusion

Would you believe us if we told you: “we can predict a national election by polling

only a small town?” You should not: a small town probably contains a biased sample

of the national population and thus one cannot draw nationwide conclusions from it.

Would you believe us if we told you: “we can predict the benefit of our opti-

mization, O, by evaluating it in one or a few experimental setups using a handful of

benchmarks?” Again, you should not: we all know that computer systems are highly

sensitive and there is no reason to believe that the improvement with O is actually due

to O; it may be a result of a biased experimental setup.

This chapter demonstrates that measurement bias is significant, commonplace,

and unpredictable: it can severely impact the results of our EVALUATIONS. Moreover

measurement bias is not something that we can just work around: just as with natural

and social sciences, we have to take measures to avoid and detect measurement bias. To

that end, we introduced two methods to aid systems researchers in their EVALUATIONS,

both adapted from other areas of experimental science.
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Mitigating bias through passive observation

In the prior two chapters we showed how state of the art tools for observing

our systems and methodologies for evaluating the impact of our ideas are often biased.

These prior two chapters paint a bleak picture for measuring traditionally expensive

measurements from computer systems. An expensive measurement is one that requires

the measurement tool to execute a large number of instructions in order for it to carry

out its measurement. In this chapter we show how through a passive approach to

measurement, we can capture traditionally expensive measurements with very low to

no overhead.

In particular, we show how to passively measure call paths and calling context.

We call our approach passive because we innocuously observe certain aspects of an

executing program and then from those observations, infer traditionally high-overhead

characteristics about the program’s execution. In this way, we can measure certain

aspects of a program’s performance that are not possible with traditional call path

profilers: such as the number of cache misses per path. Because our OBSERVATION

tool does not itself produce cache misses, these measurements are not changed by our

observations and thus reduces sources of bias. In short, this chapter demonstrates a

nearly-zero overhead technique for an important dynamic analysis: collecting call paths

and calling contexts. We call our approach Inferred Call Path Profiling, or icpp for

short.
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Call path profiles capture the nested sequence of calls encountered at run-time;

thus they are useful for determining which sequences of calls consume the most pro-

gram execution time and for identifying opportunities for aggressive inlining [5; 36] and

code specialization [66]. Calling-context profiles are similar to call path profiles except

that they produce an abstract value representing each sequence of calls rather than the

calling sequence itself. This value is not guaranteed to be unique, but it may be prob-

abilistically so [13]. Calling-context profiles are also useful, e.g., for identifying when a

program is executing a call path that it has not executed before, which may indicate an

anomaly [31].

Unfortunately, prior approaches for call path profiling are active in that they

either require program instrumentation [7; 8; 13; 35; 63; 74] or need to walk the call

stack [19; 33; 47] to collect data. Because active profiling requires significant computa-

tion during program execution, it may slow down or perturb the program significantly.

For example, Zhuang et al ’s adaptive technique [74] slows down Java programs by an

average of approximately 20% and Froyd et al ’s approach [33] slows down C programs

by an average of 7%. If we are collecting additional information at the same time (e.g.,

data from hardware-performance monitors) this slow-down may unacceptably perturb

that information. This chapter describes a passive scheme for call path profiling which

slows down C and C++ programs by an average of 0.17% (geometric mean) and at most

2.1%.

The key insight behind our approach is that knowing the height of the call stack

(in bytes) and the currently executing function uniquely identifies a context most of the

time. We call the (stack height, current executing function) pair the context identifier

since it (usually) identifies a particular context. We show how we can modify the sizes of

the activation records so that the context identifier now uniquely identifies a particular

context 88% of the time (mean across both C and C++ benchmarks). Finally, we show

how to combine the context-identifier with call graph or profile information (from a
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prior run) to infer the call paths that each context-identifier stands for. Our approach

is “passive” since it does not require any additional instructions e.g., to keep track of

the context or to traverse the call stack.

We evaluated our approach on C++ and C benchmarks from the SPEC2006

benchmark suites and using two usage scenarios: offline and online. In the offline

scenario we know the inputs of the program in advance so we can do profiling runs

in advance of the actual run; these profiling runs help to produce the mapping from

context identifiers to call paths. In the online scenario, we do not know the inputs in

advance.

We show that our approach uniquely identifies the call path from the context

identifier 88% of the time using the offline usage scenario and 74% of the time using

the online usage scenario. Moreover, if we are willing to tolerate some ambiguity (i.e., a

context identifier possibly maps to more than one call path), our results are even better:

for 5-precise (i.e., we map a context identifier to up to five paths, one of which is the

correct path) our scheme is correct 98% of the time for the offline scenario and 93% of

the time for the online scenario. We show that the run-time cost of our approach is

negligible (geometric mean of 0.17% across all benchmarks).

5.1 Motivation

The first line-of-attack when attempting to understand the performance of a pro-

gram is to measure the end-to-end statistics about the program. For example, we may

use UNIX’s time command to determine how long the program runs for and what frac-

tion of the time it spends in system versus user tasks. These measurements are cheap

and easy to do; however, they provide only a coarse-grained view into the program’s

performance.

The second line-of-attack is to use tools that measure time spent in each function.

If we use sampling (instead of instrumentation) we can do this quite cheaply also: we
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can use the hardware to trigger interrupts at regular intervals and record the currently

executing function at each interrupt. If we sample for a long-enough period, the time

spent inside a function will be proportional to the number of samples for that function.

Many standard tools, such as UNIX utilities pfmon, gprof, and the Sun Hotspot

Java VM use this approach to cheaply collect data. While these measurements are only

slightly more expensive than the end-to-end statistics, they are much richer. However,

they do not provide any context for a performance analyst to interpret the data. For

example, they tell the analyst that function f consumes much of the program’s execution

time but fmay have many callers; the analyst does not know which call path is primarily

responsible for the time spent in f.

This chapter shows how we can significantly enrich the above information with

negligible cost. Specifically, it shows how we can collect not just the time spent in

each function but also the time spent in each call path using effectively the same data

collection mechanisms as the tools above.

5.2 High-level approach

Prior approaches to keeping or capturing calling context all do so explicitly—

they use instrumentation to gather this information at runtime. For instance, Bond

and McKinley propose a technique that explicitly computes calling context by adding

instrumentation to each function callsite [13]. In contrast, we show that explicitly

computing context at runtime is not necessary—instead we can use readily available

information that is a by-product of a program’s computation as context. Our technique

relies on the fact that calling context is implicit in the height of the call stack.

In C and C++, functions store their local variables on the stack, a downward-

growing region of contiguous memory that serves as a scratch-pad for data whose lifetime

lasts no longer than that of the function invocation. In x86 64, the address of the “top”

of the stack (often referred as the stack pointer, or SP) is stored in a register dedicated
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Figure 5.1: The stack when A calls B calls C and when A calls C directly. The stack
pointer in C is different when called via call path A-B-C than when called via call path
A-C.

to this use. On every function invocation, the stack pointer is decremented to make

room for the callee’s activation record, which stores parameters, local variables, and

other temporary items. When the function returns, it increments the stack back to

what it had been before it was called.

For example, if, as in Figure 5.1, function A calls function B which then calls

C (we will abbreviate this call path as A-B-C), the stack will consist of the activation

record for A, followed by that for B, followed by that for C. If A later calls C directly,

the stack will contain only the activation records for A and C: the stack pointer will be

different if C is called via A-B-C than if it is called via A-C.

icpp relies on the hypothesis that the pair—stack height and the identity of the

currently executing function—provide a good indicator of a program’s calling context.

Figure 5.2 tests this hypothesis using unaltered binaries from the SPEC 2006 C and

C++ benchmark suite. There is one bar for each benchmark. The height of a bar gives

the fraction of call paths (encountered during a program run) uniquely identified by the

stack height and currently executing function. On average, the cid uniquely identifies

68% of call paths. Given this observation, a profile tool can record the stack pointer

(SP) and the program counter (PC) in a large number of cases and identify the calling

context, rather than add expensive instrumentation or walk the runtime call stack.
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Figure 5.2: Unaltered C and C++ binaries from the SPEC2006 benchmark suite. The
combination of the stack height and the currently executing function uniquely identifies
a call path 68% of the time.
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The approach we distill in this chapter, icpp, has four steps:

1 produce a mapping from cids to call paths

2 adjust the binary to disambiguate that mapping

3 capture the calling context at runtime

4 process the recorded context identifiers to produce call paths

There are a variety of ways to perform each of these tasks; a client can mix and match

different implementations to fit its need for speed and to match its tolerance for ambi-

guity, time dilation, and other perturbations.

In the following sections we outline several possible implementations of each of

the four components of icpp, describe scenarios under which combinations of these

implementations would be useful, and identify situations in which cid is not a good

indicator of the calling context and give insight into what we can do about it.

5.3 Step 1: constructing a path map

In order to use context identifiers as a proxy for call paths, we must be able to

map a (SP, PC) pair to the call path(s) that lead to it. We have explored constructing

this map both statically – analyzing the the program binary and source code – and

dynamically, by running an instrumented binary.

5.3.1 Statically constructed path maps

We can statically construct a path map by (1) analyzing the binary to determine

how function calls, prologues, and epilogues affect the stack height, (2) constructing a

static call graph connecting functions by the caller-callee relationship, and (3) traversing

the call graph to generate a list of possible paths and their stack heights.
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(1) Binary analysis. It is relatively straight-forward to analyze a binary to de-

termine how the program changes the stack height: adjustments to the stack

are generally limited to call sites, function prologues and function epilogues.

However, if a program allocates a dynamically determined amount of storage

on the stack, via the alloca call or GCC’s variable-length automatic arrays,

a static analysis may be unable to determine the affect on the stack.

(2) Constructing the static call graph. Constructing a complete call graph

from a binary is possible, but alias analysis (for determining the targets of

function pointers) is less precise at the binary level than with source code [21].

Instead, we used the CIL [56] framework to perform pointer analysis on C source

code to determine the targets of function pointers. We did not construct static

call graphs for C++, but we could have used Class Hierarchy Analysis [20]

analogously to resolve virtual function calls.

(3) Traversing the call graph. Given a complete call graph, we can traverse

it to generate a conservative set of possible call paths. Unfortunately, using

this approach the number of possible call paths grows exponentially with the

maximum length of a call path.

If we look up call paths lazily (that is, construct the call paths given a stack

height and target function), we can work our way backwards from the target

to main, pruning based on call height and shortest paths, although this is still

expensive for long call paths. To support this technique without added ambi-

guity, the cid construction must be invertible. Our cid is invertible, since it

uses only addition, but Bond and McKinley’s hash-based Probabilistic Calling

Context relies on modular arithmetic, so it is not.

In summary, given enough time and space, this static approach can map any cid,

even those that may not be executed. However, this technique cannot be applied if any
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function’s activation record size cannot be determined statically.

5.3.2 Dynamically constructed path maps

Dynamically constructing path maps allows us to restrict ourselves to only those

paths actually executed. This approach requires offline training run(s) that record paths

observed at run time along with their context identifiers. We use this information to

map context identifiers from later measurement runs to their call paths.

We have used icc’s -finstrument-functions feature, which inserts hooks

on each function entrance and exit, to add instrumentation that constructs path maps

for C and C++ programs. We use these hooks to build a Calling Context Tree [3] and

record the stack height for every call path observed in the running program.

Because function exit hooks are not called when functions are exited via longjmp,

we use a technique described by Froyd et al. [33] that intercepts calls to longjmp and

uses the stack pointer to determine where in the CCT execution will continue. This

technique corrects for setjmp / longjmp when they are used for exception handling

(as in the SPEC 2006 perlbench benchmark), but does not work when these calls are

used to implement a coroutine-based threading system, as in the SPEC 2006 omnetpp

benchmark. We could solve this problem (and support multi-threading in general) by

keeping a separate CCT per thread, but since the rest of the SPEC 2006 benchmarks are

single-threaded we’ve chosen not to address it. As it stands this is a current limitation

of our approach

Dynamically constructing path maps is efficient because we include in the map

only call paths that are actually executed. However, if we conduct separate training

and measurement runs to reduce time dilation and other perturbations of the system,

we must make sure that the training run covers all the paths executed during the

measurement run; otherwise icpp will report incorrect results.
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5.3.3 Summary

We applied the static approach to generating path maps to the SPEC 2006 C

benchmarks and found that while it worked on the smaller benchmarks, our first imple-

mentation was too slow on perlbench and gcc. For example, the perlbench static

call graph consisted of 1,835 nodes and 39,890 edges. A traversal targeting a hot func-

tion and stack height found 7326 possible paths and took about 50 minutes. Although

it is possible that additional program analysis would allow us to prune enough paths to

make this approach feasible, we have instead opted to explore determining path maps

dynamically. We present results of the dynamic approach in-depth in Section 5.8.

In summary, statically generating path maps is conservative but computationally

expensive and imprecise. Dynamically generating path maps is feasible but may also be

imprecise. In Section 5.4 we discuss increasing precision by disambiguating call paths.

5.4 Step 2: binary disambiguation

The mapping from context identifiers to call paths obtained in Section 5.3 may

not be one-to-one: it is possible that there are several distinct call paths with the same

height ending in the same function. In some cases, this ambiguity may be acceptable

(e.g. when displaying a hot path to the user, a tool might report two possible hot

paths instead) while in others a more precise result may be needed (e.g. when helping

a language runtime determine which destructors to call when an exception is thrown).

We now describe several techniques for reducing/eliminating this ambiguity.

5.4.1 Activation record resizing

Given a call path F1-...-Fn (where Fi are functions on the call path), the height

of the stack for the call path is:

n
∑

i=1

activation record size(Fi)
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Figure 5.3: Increasing the size of E’s activation record disambiguates B-A-D and B-E-D.

By changing the size of an activation record for a function Fi (essentially adding space

for unused local variables), we effectively change the stack height for all call paths that

include Fi. We use this mechanism to disambiguate the cid to call path mapping.

Figure 5.3 shows two ambiguous call paths, B-A-D and B-E-D. Each node is

annotated with size of its activation record. With Active Record Resizing (ARR), we

can disambiguate these paths by increasing E’s activation record size.

Changing a function’s activation record size on x86 64 usually does not require

adding any extra instructions: if the program is compiled with a frame pointer (a

common occurrence in production code as removing the frame pointer limits debugging)

we can simply modify the the immediate operand of the instruction that makes room

for the function’s local variables on the stack. This modification will, however, change

the runtime memory usage of the function.

If a function is lacking a frame pointer we may (depending upon the compiler)

need to insert a superfluous sub instruction in order to affect the size of the activation

record. For this reason we always compile our benchmarks with the frame pointer

enabled.

This method changes heights on a per function basis, so changing the function’s

height to disambiguate one call path may cause another path containing that func-

tion to become ambiguous. We present an an algorithm to apply ARR globally in
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Section 5.4.1.1.

5.4.1.1 Random search for disambiguation

In this section we describe our search based implementation of ARR disambigua-

tion. We assume that a prior instrumented run of the binary has produced a set of

call paths and their associated stack depths. Disambiguating a set of call paths is

a non-trivial global optimization problem. With that in mind, our search process is

functional—one could take a more principled approach and add heuristics that take ad-

vantage of certain aspects of the search space for a particular problem domain, however

we have found a random search to work well for our disambiguation (see Section 5.8 for

results).

We repeat the following until a large number of cids map to a single call path.

1 We randomly choose two call paths that map to a single cid. To be concrete,

we find two call paths that (i) end in the same function and (ii) have the same

stack depth.

2 We create a list of those functions that differ between the two call paths.

3 We then disambiguate these two call paths by altering the sizes of the activation

records of the functions in the list from step (2). In order to speed up the search

process and accomplish more disambiguation, with each iteration of this loop,

we change the first function in the list’s activation record by 16 bytes—and

check whether this disambiguates the call path. If it does not, then we alter the

second function in the list’s activation record by 32 bytes (the third by 48, and

so on), always checking if any of these changes disambiguate the two call paths

and halting our disambiguation process whenever we find the two paths have

been disambiguated. This approach aggressively disambiguates call paths at

the expense of runtime stack utilization. Section 5.8.1.2 discusses this further.
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We always increase the size of the stack by a multiple of 16 because on x86 64

the value of (SP - 8) must be 16-byte aligned when control is transferred to a

function entry point. Future architectures (e.g. the new Intel Core i7) may not

have this requirement.

4 If this change increased the total number of cids that map to a single call path,

we accept the change and go to step 1. Otherwise we undo the change and go

back to step 1.

If after a large number of iterations without forward progress (i.e. any change

to disambiguate call paths actually decreases the total number of cids that map

to a single call path), we will accept the change even though it is globally not

an optimal choice. This is necessary so as to keep our search from getting stuck

in local optima. We used 100 for this parameter.

We repeated these sets of steps until either (i) the total number of cids that map to a

unique call path was ≥ 97% or (ii) we made no forward progress after 2000 iterations

of the loop.

5.4.2 Callsite wrapping

Callsite Wrapping is a disambiguation technique that changes a call path’s stack

height by surrounding a callsite with decrements and increments to the stack pointer

(or equivalently replaces the call at that site with a call to a wrapper function that adds

its own activation record to the stack and then calls the original function).

Consider the two call paths in Figure 5.4, B-A-D and A-B-D. Because these

paths contain exactly the same functions, they will have the same height. ARR is

unable to disambiguate these paths: no matter how we resize the activation records of

A, B, and D, the sizes of the activation records in these two paths will always add up

to identical heights. With Callsite Wrapping, however, we can change the height of the
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Figure 5.4: Wrapping the call to B in A disambiguates B-A-D and A-B-D by increasing
the stack height along the A-B edge while leaving the B-A edge alone.

A-B edge while leaving the B-A edge alone.

Callsite Wrapping is more flexible than ARR because it eliminates ambiguity by

changing the stack height on a per callsite, rather than a per function basis. It also

allows us to handle the ambiguity that arises when one function calls another twice: we

could wrap one callsite and leave the other alone. But since Callsite Wrapping adds

instructions (and possibly new functions), it is likely to be more invasive than ARR.

5.4.3 Function cloning

Function Cloning replaces a call to a function with a call to a copy of that function

that contains added disambiguation.

Consider the paths A-B-A-A-D and A-A-B-A-D in Figure 5.5. We cannot use

Callsite Wrapping (or ARR) to disambiguate these two call paths because both contain

exactly the same edges; no matter which callsites we wrap, the total height of these

call paths at D will always be the same. If we create a clone of function A, A′, that

wraps its call to B in order to change the stack height, we then have A-A′-B-A-D and

A-B-A-A′-D. The stack height added by A′ calling B is different than that added by A

calling B, so these paths now have different heights.

This method of disambiguation requires adding new functions, and requires de-

virtualization [1] of function pointers and dynamic dispatch, so we consider it to be
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disambiguate A-B-A-A-D and A-A-B-A-D.

more invasive than Callsite Wrapping.

5.4.4 Selective edge instrumentation

Edge instrumentation inserts instructions to keep a record of when one function

is called by another. Selectively adding instrumentation along ambiguous paths to keep

track of the exact path a program took along the way is a general technique that would

allow icpp to differentiate between any ambiguous call paths at the cost of a large

perturbation in the behavior of the program.

5.4.5 Summary

We have presented four techniques for disambiguating call paths: (i) Active

Record Resizing, which can be used to distinguish call paths of the same height but

with different functions, (ii) Callsite Wrapping, which distinguishes call paths with the

same functions but different edges between them, (iii) Function Cloning, which can dif-

ferentiate between call paths with the same functions and edges but in different orders,

and (iv) Selective Edge Instrumentation, which is capable of distinguishing arbitrary
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call paths, but is expensive.

Bond and McKinley argue that the function for calculating the next context

identifier, given a call site and the current identifier, should be commutative, so that

it is easy to distinguish between, e.g, call paths B-A-D and A-B-D. We believe that in

the general case, the price of commutativity is too high. Our results (cf. Section 5.8.2)

show that, for C and C++ programs, addition of the activation record size to the stack

pointer (a commutative operation) is good enough to distinguish, on average, 85% of

paths in C++ programs and 94% of paths in C programs. Clients with a need for

greater precision can apply Callsite Wrapping and Function Cloning to disambiguate

further.

In this chapter we have chosen to focus on using Activation Record Resizing

in order to demonstrate that icpp can be precise even without any instrumentation

support. The other disambiguation techniques may also be beneficial, depending on the

client of the call path profiling.

5.5 Step 3: capturing calling context at runtime

In order to use icpp, a tool must capture the stack pointer and the program

counter at runtime. It might do so via added instrumentation, by sampling triggered

by timer, or with hardware performance monitors.

5.5.1 Sampling with instrumentation

If the client is interested in knowing the context when certain software events

occur (such as when a particular API is called, or when a certain error occurs), instru-

mentation to capture the cid could be added immediately before or after the point of

interest. This instrumentation might cause some slowdown, but it would be less than

either walking the stack or collecting edge profiles.



www.manaraa.com

84

5.5.2 Sampling by timer

If the client is interested in observing the call paths executed over period of time, it

can use timer-driven statistical sampling to collect this cids periodically. The sampling

code could be internal, delivered via signals, as is the case with gprof, or in a separate

program, like shark[19], that pauses the targeted program periodically and inspects its

state. In either case, the sampler must be able to determine the SP and the PC of the

targeted program immediately before the timer was called. Since this sampling involves

interrupting the running program, it might cause a large slowdown.

5.5.3 Sampling by hardware performance monitor

Modern processors, such as Intel’s Core Duo, have hardware performance moni-

tors with the ability to record the state of registers whenever certain interesting events

(such as cache misses) occur. icpp is ideal for use in this case because the only infor-

mation it requires to capture the calling context is the state of two registers: SP and

PC. This sampling method is minimally invasive because it does not pause the running

program.

5.5.4 Summary

Clients of icpp are able to choose among several different ways of capturing calling

context depending on the events for which they require context. Sampling with instru-

mentation or a timer causes a slowdown and may interfere with other measurements,

but affords another opportunity to reduce ambiguity; the sampler instrumentation can

look up the cid in the pathmap. If the cid is ambiguous, the instrumentation can walk

the stack just enough to disambiguate. In this chapter, however, we have chosen to use

a hardware performance monitor, instead of instrumentation, to sample the cid, so we

do not walk the stack.
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5.6 Step 4: producing call paths

Given a context identifier, icpp must then generally produce a call path (or set

of call paths) for a client’s consumption.

In previous sections, we have discussed eagerly building a full pathmap, matching

cids to call paths, and then querying this map. However, another approach is to con-

struct this mapping lazily. That is, we only attempt to discover the paths corresponding

to a cid when we are sure that the client will have use for that information. This ap-

proach is particularly useful when constructing call paths from a call graph (whether

static or dynamic) because doing so is expensive.

icpp also has a choice in how to deal with ambiguous cids. Depending on the

needs of the client, it could report all of the possible paths, it could limit itself to the

top n paths according to some heuristic (such as frequency of execution), or it could

report that it was unable to determine the exact path. In some cases, it may not even

be necessary to produce the set of call paths – it might be enough to be able to to

compare one context identifier with another.

The exact strategy icpp uses to report the call paths will depend heavily on how

the paths will be used.

5.7 Implementation of icpp

For these experiments we use the dynamic call path construction discussed in

Section 5.3.2. We disambiguate the binaries using Active Record Resizing (cf. Sec-

tion 5.4.1) and the global optimization search described in Section 5.4.1.1. We capture

the calling context using a hardware performance monitor (cf. Section 5.5.3) and discuss

producing paths from an eagerly constructed pathmap as outlined in Section 5.6.

Table 5.1 presents the benchmarks used in our study and the total number of

unique call paths for both the train and ref inputs. The number of paths varies
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Suite Benchmark # Train Paths # Ref Paths

namd 207 207
dealII 207317 225313

C++ soplex 7681 7804
povray 41495 43425
astar 547 547

perlbench 82441 125312
bzip2 210 108
mcf 49 50
milc 304 304

C hmmer 92 275
sjeng 16812 18647
libquantum 336 336
h264ref 815 3278
lbm 17 16
sphinx3 685 703

Table 5.1: The number of unique call paths for the train and ref inputs.

greatly depending upon the benchmark and input (e.g. perlbench has almost 35%

more paths in ref than in train).

5.7.1 Metrics

To evaluate our approach, we categorize call paths as either precise or ambiguous.

We evaluate two usage scenarios of icpp. In the first scenario, we use the same input

to profile and then evaluate. In the second scenario, we profile with one set of inputs

and evaluate on a new set.

• In the first scenario, there were two possible outcomes for a given call path:

(i) if there are no other paths with the same cid, we call the path “precise”;

and (ii) if there are any additional paths with the same cid, we call the path

“ambiguous”.

• In the second scenario we collect cids on the profile input and then categorize

call paths on the evaluation input. In addition to “precise” and “ambiguous”

there are two additional categorizations for an evaluation call path: (i) if there

are some paths in the profile run with the same cid as the evaluation path, but

the evaluation path is not among them, we call the path “incorrect”; and (ii) if
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there are no paths in the profile run with the same cid as the evaluation path,

we call the path “missing”.

We also classify paths by the total number of call paths that share their cid. We

call this number a path’s “degree of ambiguity.” Under this classification, a path with

degree of ambiguity 1 is precise, a path with degrees of ambiguity 2 shares its cid with

exactly one other path, and so on.

Note that our definition of a call path—functions that are active on the call

stack—does not consider the particular call sites within a function. This definition is

the same as some prior work (e.g. gprof[35], Spivey[63] and Zhuang et al[74]). If a

particular client needs to disambiguate call paths based upon the specific call sites of a

function, Section 5.4 lists three techniques that accomplish this goal (Callsite wrapping,

Function cloning and Selective edge instrumentation).

5.8 Results

Inferred call path profiling is useful in both an offline as well as online scenario.

In offline scenarios, we are often running in a controlled environment where we

know all the inputs to the program and can run the program multiple times to obtain

the information we need. icpp is invaluable in this case because it enables us to collect

context identifiers simultaneously with other data without worrying about perturbing

those measurements. Moreover, since we are able to run the program multiple times,

we can perform an instrumented run (cf. Section 5.3.2) using the same inputs as the

data collection runs in order to translate the context identifiers to full call paths.

In online scenarios, we do not have the luxury of rerunning the program or know-

ing all the inputs to the program before it runs. icpp profiling is useful in this setting

since context identifiers induce minimal overhead on the running program yet the infor-

mation is rich enough that if we need the full call path, we can look it up in the path
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map.

We now evaluate icpp with respect to the online and offline scenarios.

5.8.1 Cost of icpp

Broadly speaking icpp has two kinds of costs.

• Profile costs: The cost associated with an offline profile run that gathers data

necessary for disambiguation. This is a three phase process each with associated

costs: (i) the data collection cost that collects the cid to call path mapping

(Section 5.3.2), (ii) the cost of disambiguation of the binary (Section 5.4.1)

and (iii) the cost associated with looking up the cid in the call path map

(Section 5.6).

• Measurement costs: The runtime overhead of running a disambiguated bi-

nary (both space overhead and time overhead) while at the same time using

the hardware performance monitors to sample the cid at regular intervals (Sec-

tion 5.5.3).

This section reports on all of these costs.

5.8.1.1 Cost of icpp: Profile costs

Table 5.2 details the offline costs of icpp. In this section We discuss each of

these costs in turn.

Cost of offline profiling In order to build the cid to call path mapping, we

employ a profile run that maps the cid at each function entry to the current call path

(See Section 5.3.2 for exact details of our approach). In column “Profile” of Table 5.2 we

show the overhead of our instrumentation on the train inputs. We display overhead

as the ratio of the runtime of a program before instrumentation over the runtime of the

program with instrumentation. The geometric mean overhead for all of the benchmarks
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Suite Benchmark Profile Lookup Disambiguation

namd 1.2x 269 cycles 1.2(sec)
dealII 9.1x 2395 cycles 384(sec)

C++ soplex 3.6x 497 cycles 16(sec)
povray 5.8x 721 cycles 960(sec)
astar 3.4x 331 cycles 2(sec)

perlbench 2.9x 1002 cycles 196(sec)
bzip2 1.4x 320 cycles < 1(sec)
mcf 1.6x 208 cycles < 1(sec)
milc 1.4x 282 cycles < 1(sec)

C hmmer 1.0x 230 cycles 3.1(sec)
sjeng 2.0x 625 cycles 5(sec)
libquantum 1.1x 270 cycles 2(sec)
h264ref 2.1x 342 cycles 31(sec)
lbm 1.1x 163 cycles < 1(sec)
sphinx3 1.3x 344 cycles < 1(sec)

Table 5.2: The cost of icpp outside program execution.

is 2.9x. For some of the programs, the overhead is large (i.e. 14 times slower for

dealII). We should note that (i) this process is offline and is done once per input

for each program and (ii) our instrumentation can be improved upon to reduce the

overhead.

Cost of lookup in context-path map Once we have the path map there is

an associated cost of looking up any particular cid in the map. The size of the path

maps varies with the benchmarks in our study and thus so too does the cost. In order

to investigate the expense of looking up a cid in the path map we wrote a simple tool

that loads each of the path-maps into a balanced red-black tree. We selected a large

number of random cid values and recorded the average time amount of time it took to

look up a particular cid in the map. The “Lookup” column of Table 5.2 details the

average number of microprocessor cycles to perform this lookup for each benchmark.

The benchmark dealII has the largest number of paths (see Table 2.1 for full list)

and so it makes sense that it too has the longest lookup times (our red-black tree has

O(log N) complexity where N is the total number of entries in the map).

Cost of disambiguation The “Disambiguation” column of Table 5.2 shows the

offline runtime cost of disambiguation using our ARR method described in Section 5.4.1.

For 12 of the 14 benchmarks the amount of time to disambiguate each benchmark so that
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either 97% of the call paths uniquely map to a single cid, or the disambiguation process

cannot make forward progress, is less than 1 minute. The two that take longer than 1

minute, dealII and perlbench, take on the order of 6 and 3 minutes, respectively.

The reason for this increase in running time is due to the fact that these two benchmarks

have the largest number of call paths. We should note that this overhead, however, is a

one time cost that could be done, for instance, at the time of the program’s installation.

5.8.1.2 Cost of icpp: measurement costs

In this section we measure the cost (both in overhead and space) of running a

disambiguated binary while at the same time using the hardware performance monitors

to sample the cid every one million cycles (see Chapter 2 and Section 2.3 for more

details).

Our prior work [53] shows that many aspects of the experimental setup can bias

experiments. Concretely, this bias may make our runs look slower or faster compared

to a run of the program that does not collect cids. To avoid such bias, we ran each

experiment (with and without the cid collection) in 32 different experimental setups to

obtain a distribution of run times and used t-test to determine if there was a statistically

significant difference between the two distributions. We generated the 32 experimental

setups by randomly changing environment variables and using randomly generated link

orders, both of which introduce bias.

Runtime Overhead Figure 5.6 plots the data for the C++ (a) and C (b)

benchmarks. Each violin summarizes the execution times of the runs with (“original”)

and without (“collect cid”) collecting the cid. To enable us to present data for multiple

benchmarks on the same violin, we normalized the data to the median of the “original”

runs. The white dot in each violin gives the median point and the thick line through

the white dot gives the inter-quartile range. The height of the violin gives the range

in execution times we observed as a result of changing the experimental setup. The



www.manaraa.com

91

0.96

0.98

1.00

1.02

1.04

1.06

l
l

l l l
l

l
l

l l

0.24% NC 0.36% 0.35% NC

n
a
m

d

d
e
a
lI
I

s
o
p
le

x

p
o
v
ra

y

a
s
ta

r

ru
n
ti
m

e
 /

 m
e
d
ia

n
 o

f 
d
e
fa

u
lt default

collect CID

(a) C++

0.96

0.98

1.00

1.02

1.04

1.06

l

l

l l l
l

l l l l l l l
l

l
l

l
l

l l

2.1% NC NC NC NC 0.02% NC −0.2% 0.3% NC

p
e
rl
b
e
n
c
h

b
z
ip

2

m
c
f

m
ilc

h
m

m
e
r

s
je

n
g

lib
q
u
a
n
tu

m

h
2
6
4
re

f

lb
m

s
p
h
in

x
3

ru
n
ti
m

e
 /

 m
e
d
ia

n
 o

f 
d
e
fa

u
lt default

collect CID

(b) C

Figure 5.6: Performance impact of recording cid for C++ and C programs.

width of the violin gives the distribution of the execution times. The numbers above

the x-axis give the mean overhead of “collect cid” as a percentage. NC says that there

is no statistically significant slow down (as determined by the t-test). From this data

we see that collecting cids incurs an insignificant slow down (median of 0 across all

benchmarks, geometric mean of 0.17%); it is non-trivial only for perlbench at about

2.1%.

Space overhead Active Record Resizing adds to the size of the run-time stack

because it disambiguates call paths by increasing the size of function activation records.

Table 5.3 demonstrates that while many programs show little to no increase in stack

usage, others, such as perlbench, require an increase of more than 2.5x. perlbench

is extreme in this case because it has many functions with identical activation record

sizes called via function pointers from the same callsites. ARR must therefore increase

the activation record sizes of these functions in order to distinguish call paths containing

them. When disambiguated functions are called recursively, the stack increase can be

very large. The average (geometric mean) stack usage increase across all benchmarks,

however, is only 1.13x. It is worth noting that (cf. Section 5.8.1.2) this moderate

increase in stack usage has almost no performance impact.

Our current technique for ARR disambiguation balances the time it takes to

disambiguate call paths (cf. Section 5.8.1.1) with the amount of runtime stack utiliza-
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Suite Benchmark Increase in Maximum Stack Usage

namd 1.00x
dealII 1.16x

C++ soplex 1.05x
povray 1.13x
astar 1.04x

perlbench 2.54x
bzip2 1.00x
mcf 1.00x
milc 1.02x

C hmmer 1.00x
sjeng 1.00x
libquantum 1.61x
h264ref 1.00x
lbm 1.00x
sphinx3 1.00x

Geometric Mean 1.13x

Table 5.3: The increase in the maximum size of the run-time stack when disambiguating
with Active Record Resizing.
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tion. We found that aggressively changing the activation record sizes of functions in

order to disambiguate call paths usually sped up the time it takes to disambiguate a

benchmark—however it does so at the cost of runtime stack utilization. Ultimately,

our approach was a balance between these two parameters (disambiguation speed and

stack usage) and any further implementations of ARR disambiguation are free to choose

differently.

5.8.2 Offline scenario

In the offline scenario, we assume that we have all the inputs available in advance

and thus we can produce the cid to call path mapping by running the program and

observing its behavior (e.g. as in Section 5.9 where we might want to understand which

call paths have the highest L1 data cache miss rate).

In Section 5.7.1 we discuss the metrics used in this study. To remind the reader,

we briefly reiterate them here. We collected all call paths that we encountered during

our program run. There are two possible categorizations for a given call path: (i) there

are no other paths with the same cid (“precise”); and (ii) there are additional paths

with the same cid (“ambiguous”). Even in the “ambiguous” case, the cid still maps to

the correct call path but it maps to additional call paths also. This occurs when there

is more than one sequence of calls that leads to a procedure and the different sequences

yield exactly the same stack depth. We call the total number of paths that share a

path’s cid its “degree of ambiguity”. A path with degree of ambiguity 1 is precise, a

path with degrees of ambiguity 2 shares its cid with exactly one other path, and so on.

We can get ambiguity even after adjusting the sizes of the activation records due

to two reasons. First, our algorithm for adjusting activation record sizes is greedy and

gives up after a fixed number of iterations, so it may not eliminate all ambiguity. This

problem can be reduced by using a smarter algorithm (though we believe, but have

not proved, that optimally adjusting activation record sizes is NP-Hard). Second, our
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Figure 5.7: Precision of path profiles for C++ and C benchmarks (offline scenario).

ambiguity algorithm does not help the situation when two call paths to a procedure

contain exactly the same procedures but in a different order. This problem cannot be

fixed by adjusting activation record sizes; Section 5.4.2 describes mechanisms that can

eliminate this problem. On manually inspecting the output of our system we found that

the second reason was the most prominent one for ambiguity.

Figure 5.7 shows the results for the C++ and C benchmarks. We get a precision

of 0.80 for C++ programs (i.e., 80% of the encountered call paths have a cid that maps

only to that path) and 0.95 for C programs. One of the C++ programs (povray) does

suffer from significant ambiguity because many of its call paths contain the exact same

functions, but in a different order. Still, our approach yields precise call paths with

minimal run-time overhead for the vast majority of the cases.

Figure 5.8 sheds more light into the cases that are ambiguous. It has one line for

each benchmark. A point (x, y) says that the probability that the degree of ambiguity

of a call path is less than x (that is, that the call path’s cid maps to x or fewer call

paths) is y. We see that for the C programs, the ambiguity is not serious: even when

we have some ambiguity, it is typically no worse than 2. Even for povray most (95%)

of the time we get an ambiguity of 5 or less. Moreover, if we consider the entire suite of

benchmarks, on average 99% of call paths have cids that map to 5 or fewer call paths.

This is a particularly useful statistic if a client of icpp is tolerant to some amount of
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Figure 5.8: Degree of ambiguity (offline scenario).

ambiguity.

To summarize, our approach produces precise call paths for the offline scenario

while incurring minimal overhead for the running program.

5.8.3 Online scenario

In the online scenario, we assume that we do not have have all the inputs available

for generating the cid to call path mapping.

In Section 5.7.1 we discuss the metrics used in this study. To remind the reader,

we briefly discuss them again here. We ran on a profile input (SPEC train) and

constructed a mapping from cids to call paths. We then collected all call paths from an

evaluation input (SPEC ref) and categorized these paths. In addition to the “precise”

and “ambiguous” outcomes, there are two additional outcomes in the online scenario:

(i) there are some paths in the profile run with the same cid as the evaluation path,

but the evaluation path is not among them (“incorrect”); and (ii) there are no paths in

the profile run with the same cid as the evaluation path (“missing”).

Figure 5.9 shows the results for the C++ and C benchmarks. We see that when

a call path from the evaluation run is present in the profile run, we are more often than

not precise (75% of the time for C++ programs and 73% of the time for C programs).

However, we are unable to map the cid for an evaluation path to any profile path 7% of
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Figure 5.9: Precision of path profiles for C++ and C benchmarks (online scenario).

the time for C++ programs and 20% of the time for C programs. These missing paths

indicates that our profile run did not exercise the full range of behavior we saw in the

evaluation runs. To alleviate this problem, we could either use more inputs for training

runs or use a call graph analysis to come up with the mapping.

Figure 5.10 is similar to Figure 5.8 and sheds more light into the ambiguous

cases. Unlike Figure 5.8, the curves in this graph may not go up to 1.0 because of the

missing and incorrect cases. As with Figure 5.8, we see that the curves typically reach

their asymptote early; in other words, even when our approach produces ambiguous

results, the amount of ambiguity is small—on average 94% of call paths that are not

missing or incorrect have cids that map to 5 or fewer call paths.

To summarize, while our results are slightly inferior for the online case than the

offline case, they are still good: when our system produces call paths, they are correct

more than 74.5% of the time. Our system rarely produces incorrect results (4% of the

time for C++ programs and 3% of the time for C programs).

5.8.4 Benefit of activation record resizing

So far, all of our results use activation record resizing (Section 5.4.1). Fig-

ures 5.11 and 5.12 give data similar to Figure 5.7 and 5.9 but without activation

record resizing. Comparing these graphs, it is clear that activation record resizing
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Figure 5.10: Degree of ambiguity (online scenario).

greatly increases the number of times we provide a precise path. For our offline scenario,

activation record resizing increases our precision from 67% to 80% for C++ programs

and from 85% to 95% for C programs. In our online scenario, activation record resizing

increases our precision from 60% to 72% for C++ programs and from 67% to 75% for

C programs.

5.9 Usage scenarios

In the prior section we evaluated both the cost and efficacy of Inferred Call Path

Profiling in an offline and online scenario. Now we give some insight into how clients

of icpp could use our technique in their own environments.

Hardware-centric call path performance analysis: One compelling use

of icpp is attributing certain hardware events (i.e. L1 data-cache misses, or branch-

mispredicts) to the call paths that give rise to the majority of those events. Traditional

call path profiling techniques are suspect in this situation because they either add ex-

tensive instrumentation (e.g. gprof) or walk the stack (e.g. Apple’s shark)—both of

which interfere with the hardware structures (e.g. L1 data-cache) we wish to measure.

By splitting our measurement task into two runs, one in which we collect the path-map

and then one that collects the cid in hardware performance monitors, we reduce any

perturbation in our measurements due to instrumentation.
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Figure 5.11: Precision of path profiles for C and C++ benchmarks (offline without
activation record sizing).
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Figure 5.12: Precision of path profiles for C and C++ benchmarks (online without
activation record sizing).
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Debugging support: If the language semantics permit it, a language runtime

could use icpp to determine the call stack when any kind of exception is thrown (e.g.

divide by zero, segfault, etc.). If the call path mappings are stored in a cold area of

the binary, the language runtime could simply lookup the set of call paths that map to

the current cid when an exception is caught. Because an exception denotes anomalous

behavior, a bit of ambiguity in the call paths provided to a user is not that much of an

issue. Just giving the user a possible set of call paths can greatly aid in their search for a

bug. Moreover, because icpp does not walk the runtime stack aggressive optimizations

do not affect its correctness.

Analysis for compilation in a VM: Modern JIT compilers, such as Sun’s

Hotspot JIT, use a sampling profiler to guide their decisions about which hot methods

to optimize. Because these profilers only sample the current executing function, the

granularity of their compilation is limited to the method.

If a particular JIT used icpp for profiling it would have an understanding not

just of the hot methods, but also the hot paths—all with negligible amounts of extra

instrumentation. This would allow the JIT compiler to increase its granularity of com-

pilation from the method to the call path. Because it is safe to compile multiple paths,

this application of icpp would be tolerant of some amount of ambiguity.

Anomalous behavior detection: Bond and McKinley propose using proba-

bilistic calling context identifiers to detect anomalous (and therefore possibly insecure)

call paths in running programs. Our cid could be used for this purpose as well. This us-

age would be tolerant of some amount of ambiguity because it does not require actually

enumerating the possible call paths for a context; it is enough to identify them.

5.9.1 Summary

In this section we have described several possible uses of icpp, in both online and

offline scenarios.
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5.10 Conclusion

This chapter introduces a novel approach for capturing calling context and then

building call path profiles: Inferred Call-Path Profiling. The key insight behind our

technique is that readily available information during program execution—the height

of the call stack and the identity of the currently executing function—can uniquely

identify the sequence of function calls that lead up to the currently executing function.

We call the (stack height, current executing function) pair the context identifier. For

those instances where the context identifier maps to multiple call paths, we show how

to affect the size of function activation records so as to increase the likelihood that

any particular context identifier maps to a single call path. Our passive approach to

OBSERVATION allows us to measure traditionally high-overhead characteristics about

the program’s execution without the overhead.

We evaluate our approach on the SPEC CPU2006 C and C++ benchmarks in

two usage scenarios: offline and online. In the offline scenario we know the inputs of the

program in advance so we can do a profiling run prior to the actual run. In the online

scenario, we do not know the inputs in advance. We show that our approach allows the

context identifier to uniquely identify 88% of call paths in the offline scenario and 74%

of call paths in the online scenario. Because modern processors allow us to periodically

sample both the program counter and stack pointer—the constituents of our context

identifier—in hardware performance monitors, the overhead of our approach is 0.17%

(geometric mean across all benchmarks) and at most 2.1%.
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Chapter 6

Related work

In this chapter, we discuss related work. As this dissertation touches on a few

disparate areas, we break up the related work into five distinct areas. First, we consider

prominent essays that compare experimental science in computer science to other areas

of experimental work (e.g. Biology or Physics). Second, we discuss prior work that

discusses sources of bias in systems experiments, much in the same vein of our work in

Chapter 4. Third, we consider a few papers on the pitfalls and issues in evaluation—

or proper experimental methodology—of computer systems experiments. Fourth, we

discuss prior work in profiling: both method profiling and call path profiling.

6.1 Computer science is an experimental science

In their joint Turing Award lecture, Simon and Newell, in 1975 talked at length

about computer science as an empirical discipline[57]. In their domain, Artificial Intel-

ligence, these two prolific computer scientists argue that computer science is “the study

of the phenomena surrounding computers”. Their take on computer science research

is that it is our job, as computer scientists, to build theories about our domain: much

like a Biologist theorizes about the Cell Doctrine or a Geologist theorizes about the

movement and flow of plate tectonics. Simon and Newell’s view of computer science as

an experimental science has been shared by a host of others over the years.

Shortly after the Turning Award lecture of Simon and Newell, Feldman and
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Sutherland (1979), in an NSF sponsored workshop on rejuvenating experimental com-

puter science argue that universities need to “Use appropriate criteria in evaluating

experimental computer science...”[30]. In a CACM article put forth by the ACM Edu-

cation Board in 1989, Denning et al[18] discuss guidelines for inspiring “general inquiry

into the nature of our discipline”. They suggest that a major component of research

should be in what they call design, but what we here in this dissertation refer to as

experimentation.

More recent work, such as that of Feitelson, argues that experimental proce-

dures in computer science research can lead to interesting research results in their own

right[29]. Fenton et al argue that computer science, and software engineering in par-

ticular, lack rigorous methodologies that aid aid software researchers in evaluating the

effectiveness of their creations[32].

These papers all argue that computer science needs more rigor and emphasis

on experimental design. Indeed, that is the view that we take in this dissertation.

Unlike these prior work, however, we also introduce tools and methodologies that aid

researchers in OBSERVING and EVALUATING their own systems.

6.2 Bias in performance analysis

Even though bias is a new term in the computer science literature, systems re-

searchers have long known of its effects on our experiments. For example, Kushman in

an unpublished manuscript details what he calls performance anomalies of the Ultra-

SPARC processor[45]. In this work, he demonstrates how removing a single instruction

from a kernel can change the performance of a program by a factor of 3x. This work is

much like the work in Chapter 4 as we both find sources of bias and work around them

in our experimental design.

In their work on OS security, Somayaji et al leverages bias to ensure that all

copies of an OS installed on a host of machines do not all suffer the same security
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vulnerabilities[62]. In this work, the authors use something akin to experimental setup

randomization to vary the memory layout of their binary

In [16], Citron demonstrates that using only a few of the programs from SPEC

can bias the evaluations of our results. He further shows that many papers (estimates

80%) will not use the entire SPEC suite by 2005. This is not unlike the work of Ziles, in

which he shows that using health from the Olden benchmark suite [75] to understand

the efficacy of optimizations that work on linked data structures can unfairly show these

optimizations in a good light.

And, finally in [28], Feitelson illustrates that bias can creep into our experiments

in the domain of job scheduling. His work here demonstrates that careful experimental

design is paramount to an evaluation that one can trust.

6.3 Experimental methodology in systems research

Prior work in systems has shown methodological issues can significantly impact

our results. Papers on proper experimental methodology for different domains of com-

puter systems research have a small role in the literature: for example, [44] informally

discusses how to evaluate algorithms experimentally, while Clark et al show how to

perform a performance analysis on the virtual machine OS Xen[17].

Blackburn et al find that the size of the heap can bias evaluations of garbage

collection[12]. And Georges et al outline proper statistical techniques for a good experi-

mental evaluation of Java programs[34]. This paper is similar to this prior work in that

it develops methodologies and tools that aid programmers in knowing whether or not

they can trust their data.

Likewise, Malony et al. have produced a significant body of work on instrumenta-

tion perturbation. For example, they study source-level instrumentation that produces

traces for SPMD systems [61], and remove perturbation by converting a perturbed trace

into an approximation of an unperturbed trace. Their approach adjusts the time stamps
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of each event by subtracting a constant instrumentation overhead α and by taking into

account message passing communication between processors. In more recent work [48]

they describe how to remove overhead from call profiles generated with source-level

instrumentation. They evaluate their approach on profiles of function execution time.

While they mention the possibility to collect profiles of other metrics, they do not eval-

uate their approach on such profiles. As we show in this paper, perturbation in metrics

other than cycle or instruction count can be orders of magnitude bigger than the over-

head in the number of extra instructions. Moreover, that perturbation generally is not

linearly related to the overhead.

Waheed and Rover [71] study three different instrumentation systems for parallel

program performance evaluation. While they describe a broad range of aspects of such

systems, their view of perturbation is limited to the (time) overhead, in particular to

the overhead of flushing trace data buffers in parallel systems. Also in the area of

parallel program instrumentation, Hollingsworth and Miller [39] present an approach

to dynamically change the amount of instrumentation in the Paradyn system to reduce

overhead. Similar to the other papers, they investigate the perturbation in the form of

increased execution time.

Najafzadeh and Chaiken [54; 55] investigate the perturbation of hardware perfor-

mance metrics due to software instrumentation. They propose to validate measurement

mechanisms by comparing the resulting models with models generated with different

measurement mechanisms, and by running them in different environments. However,

they only investigate perturbation of instruction and cycle counts, and only on a limited

set of simple benchmarks.

In their work on flow and context sensitive profiling [4], Ammons et al. describe

perturbation of hardware counters due to software instrumentation. To determine the

perturbation due to their instrumentation, they compare the total metric values in a

lightly instrumented system (reading out HPMs every six seconds to prevent counter
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overflow) to the total metric values produced by their flow and context sensitive profiling

system. They show perturbations of metric values by up to a factor of 1442.89. However,

for the majority of metrics and benchmarks, perturbation stays below 50%.

Systems researchers commonly address environmental perturbation by using sta-

tistical approaches to performance analysis [34]. To compare the performance of multi-

ple variants of a system, a performance analyst executes a program multiple times and

uses the distributions of the performance metric values to decide whether the measured

improvement is statistically significant. In this paper, instead of determining a sta-

tistical symmetrization of performance that overcomes environmental perturbation, we

investigate how perturbation changes depending on the different performance models

used.

6.4 Profiling

In this section, we discuss prior work around profiling. We first consider call path

profiling tools and then consider method level profiling tools.

6.4.1 Evaluating profiler accuracy

Both industry and the academic literature are full of method profiling tools. Many

of these tools use sampling to capture a metric of interest. For example, Arnold and

Grove do an offline run to capture the true frequency of caller/callee traversals; they

then propose a lightweight approach to approximate this same information[5]. Because

the frequency of caller/callee traversals do not change from run to run, they can use

their full counts as a baseline to which they compare. Other papers that introduce

novel profiling methods use a similar means to validate the accuracy of their profilers

(e.g. Shadow Profiling by Moseley et al approximate the frequency of call paths[50] or

Duesterwald and Bala’s tool for hot path prediction[26]).

Some profiling tools do not sample, but fully instrument code capturing the time
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spent in each method by wrapping every call to that method[25]. Indeed, both the

Netbeans profiler as well as the Eclipse TPTP profiler work in this manor. The overhead

for these profilers is considerable; we found about a 1000x application slowdown when

every method in an application is instrumented. For this reason, these profilers only

instrument those places that a user explicitly specifies—thus reducing overhead to a

reasonable level. Their claim is that reduced overhead implies more accurate profiles.

Prior work sometimes uses better results as a proxy for profiler accuracy: the

idea being that an accurate profile is more likely to lead to optimizations (e.g. better

data layout choices[60]). Buytaert et al [15] found that sampling at yield points to

drive dynamic compilation biased the compiler’s decisions. As a solution, they use a

hardware performance monitor (HPM) driven timer-based approach to sampling. Using

HPMs as the foundation for a time-based profiler is similar to our approach with tprof ;

however, a HPM time-based profiler would incur lower overhead. Nevertheless, our tprof

implementation demonstrates a solution to the problems of sampling at yield points for

profiling.

Finally, Whiley uses profiler precision as a proxy for profiler accuracy[72]. His

evaluation looks at whether multiple runs of the same profiler agree with each other. A

precise profiler (i.e. one that produces the same profile every time it is run) does not

mean that the profile is accurate. For example, imagine I have a profiler that always

reports foo to take up 100% of program execution, regardless of whether an application

even calls foo. This profiler is precise, but not accurate.

6.4.2 Profiling implementations

There is an abundance on prior work that either introduces novel techniques for

collecting calling context or directly using calling context (e.g. in optimizations). In

the paragraphs that follow we review some of that work.

One of the most popular calling context profilers is the gprof tool, which builds
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caller/callee relationships by instrumentation the epilogue of all functions in a pro-

gram [35]. These caller/callee pairs are then aggregated—with some loss of precision—

into a dynamic call graph for digestion by a user. This work was later extended to

more precisely handle programs with mutual recursion and dynamic method binding

by Spivey [63]. This type of tool is arguably one of the more useful instruments that

a programmer has at her disposal. Inferred Call Path Profiling can provide the same

functionality without any of the online instrumentation cost.

Ball and Larus illustrate how to add instrumentation optimally to edges in an

intra procedural control-flow graph [7]. Unfortunately this amount of overhead (16%

on SPEC95) is large enough to obfuscate certain types of program understanding (e.g.

which paths have the largest number of L1 data cache misses) and our focus is on inter

procedural call paths.

Obtaining accurate call path profiles usually requires high overhead due to the

significant amount of instrumentation. Usually, however, programmers only care about

hot call paths and can disregard any others. This insight is the basis for most prior

work that does selective instrumentation via sampling, bursting or some combination

thereof (e.g. [6; 8; 36; 70; 74]).

Bernat and Miller had the insight that a programmer usually only cares about the

behavior of a few functions out of the many in an application [8]. Their insight allows

a programmer to selectively instrument functions—thus allowing the user to balance

instrumentation overhead with accuracy of results.

Zhuang et al introduce an adaptive approach to sampling hot call paths. They

walk the runtime call stack and are smart about how far up they walk—i.e. stopping

the stack walk when they have hit a part of the calling context tree that they already

have sampled [74]. Their overhead is some of the lowest in call path profiling (20% for

Java programs).

Walking the runtime call stack is one way to capture calling context—however do-
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ing so at every entry to a function boundary is overly obtrusive. Thus, most approaches

to stack walking are based upon sampling (e.g. [19; 33; 47]). Froyd et al sample the call

stack to produce call paths at an overhead of 7% for the SPEC2000 benchmarks [33].

Likewise, the Shark performance tool provides sampled stack walking to identify hot

call paths [19]. Our Inferred Call Path Profiling approach could be used as stand-in

replacements for both of these approaches.

There are many uses of calling context and call path profiles in prior work (e.g.

debugging via stack traces or using call paths to aid in optimization decisions). For

instance, Hazelwood and Grove use calling context to aid inlining decisions [36]—as

do Arnold and Grove [5]. Likewise, Pettis and Hansen use context to help with code

positioning [59]. An interesting area of future work would be using these techniques

with icpp as a generator of calling context.

Bond and McKinley’s Probabilistic Calling Context [13] instruments function

epilogues and keeps a hashed value that is built from the prior functions on the call

stack and the current executing function. Much like our icpp, this context information

is probabilistic and is likely to provide a unique identifier for context. However, unlike

our approach they do not keep track of which call paths are on the current runtime

stack. Moreover their approach adds instrumentation to compute the hash function at

each function entry. Probabilistic Call Context is more likely to provide a unique calling

context, however without a significant amount of modification to their technique it is

unable map their context identifier to call paths.

Our icpp approach to profiling is similar Shye et al’s path profiling technique. In

this work, the authors use the branch target history buffer of modern CPUs to extract

the path of execution.

Finally, the key insight behind icpp was independently developed by Inoue and

Nakatani[40] and presented at the same conference. Their technique for capturing calling

context works much like our icpp approach, however, their approach only captures a few
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levels of context up the calling context tree, and us thus less precise than our approach.
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Chapter 7

Conclusion

In this dissertation we have argued that the computer systems research commu-

nity needs to support experimentation with tools that allow a researcher to accurately

observe her system and methodologies that allow researchers to accurately evaluate the

impact of their innovations. In particular we have given two concrete examples as to

why we think the computer systems community should support experimentation.

(1) We have shown how current state of the art methodologies for EVALUATING

the efficacy of a compiler optimization may be biased. Further, we have shown

that the extent of bias is pervasive, occurring on multiple machines and even

in one simulator. Because of this bias, a researcher can easily be lead to an

incorrect conclusion.

(2) We have shown that four popular, state of the art Java profiling tools for

OBSERVING Java application performance are likely to produce inaccurate pro-

files. Because of this inaccuracy, a researcher can easily be lead astray and end

up spending time and effort optimizing a method that is not really hot.

We acknowledge that the sensitivity of computer systems can both impact our

observations and our evaluations. In turn, we introduce two tools for observing our

system, both of which allow researchers to understand the performance of their system.

We have introduced a methodology that allows researchers to know whether or not the
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sensitive nature of computer systems behavior is impacting their experiments.
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